Typographical Errors in Robert L. McCoy, "Modern Exterior Ballistics" Schiffer Publishing Ltd, Atglen, PA, 1999

Corrections by Donald G. Miller, LLNL, based on comparisons with the Final Manuscript.
With additions and corrections by Henry Hudgins, Picatinny (denoted by H). by Gene Cooper and Peter Plostins, ARL. by Robert Lieske and Henry Hudgins (denoted by L). by Gene Cooper, ARL (denoted by C). by Darrel Barnette, U. of Texas (denoted by B). by James B. Millard, "On-line Ballistics (denoted by M).

Note: Many of the corrections below are "cosmetic", such as revised spacings between symbols or commas, and are designed to make the text easier to read. These were included in the as yet unrealized hope that the publisher would reprint the text or at least include these corrections in an errata sheet. However, most of the errors corrected below are serious, and include incorrect equations and symbols, missing but essential equations and symbols, wrong table headings, incorrect spellings, the botching of the MCTRAJ Basic listing, completely wrong references for Chapter 9 , and the missing index. Only a few of these errors are typos in Bob's final manuscript.

Bob McCoy passed away just after he submitted that final manuscript, and could not oversee the final result. No corrections could have been made before printing because galley or page proofs were never sent to any of his representatives.

The symbol \longrightarrow means "is corrected to read". Ic and uc mean lower case and upper case, respectively.

P8 L1: \quad wish toeve \longrightarrow wish to leave

Chapter $1 \quad$ PP10-31
P10 RH col L6: $\quad-\longrightarrow 3 / 4$
P23 RH col L7: $\quad-\longrightarrow 7 / 8$
P30 LH col ref 2: $1893 \longrightarrow 1900 \quad$ wrong in MS
P30 LH col: insert a blank line between ref 15 and ref 16

Chapter $2 \quad$ PP32-41

P33 LH col $3^{\text {rd }}$ line above eq. (2.3): angle is,\longrightarrow angle is α_{t}, i.e., insert " α_{t} " between "is" and comma
L P33 RH col $12^{\text {th }}$ line above § 2.3: $\sin \alpha_{t}=\sqrt{\left(\frac{\sin \alpha}{\cos \beta}\right)^{2}+\sin ^{2} \beta} \longrightarrow \sin \alpha_{t}=\sqrt{(\sin \alpha \cos \beta)^{2}+\sin ^{2} \beta}$
RH col $5^{\text {th }}$ line above § 2.3: $\quad, \alpha_{t} \longrightarrow, \alpha_{t}$
i.e., fraction is wrong (wrong in MS)

RH col eq. (2.6-a): Vecto $\longrightarrow \quad$ Vector
P34 RH col eq. (2.6-a): Vecto \longrightarrow Vector

P35 LH col eq. (2.8):
P35 RH col eq. (2.12) and (2.13):
P35 RH col below eq. (2.13):

Avial \longrightarrow Axial
change the fonts of these equations to be consistent with all the others $\cos \alpha_{t} \approx 1$ and $\longrightarrow \cos \alpha_{t} \approx 1$ and
i.e., delete comma before subscript t and insert space between " 1 " and "and"

P36 LH col 2nd definition under eq. (2:16): $\quad C_{N_{\alpha 02}} \longrightarrow C_{N_{\alpha_{2}}} \quad$ i.e., delete subscript 0 and drop 2
P36 RH col 1st line of 3 rd ${ }^{\text {rd }}$ par.: \quad positive $C_{M_{\alpha}} \longrightarrow$ positive $C_{M_{\alpha}} \quad$ i.e., insert space before $C_{M_{\alpha}}$

P37 RH col 2nd line of par. below eq. (2.24):

$$
\text { moment on is } \longrightarrow \text { moment on } \sin \alpha_{t} \text { is } \quad \text { i.e., insert } " \sin \alpha_{t} "
$$

P38 LH col line below eq. (2.26): reduce the large space between "where" and " $C P_{F}$ "
P38 RH col 3rd line from bottom: \quad insert q_{t} and $\dot{\alpha}_{t}$ as below proportional to and one proportional to.\longrightarrow proportional to q_{t} and one proportional to $\dot{\alpha}_{t}$.

P40 LH col Table 2.1:
All symbols on the left hand side of the equations should have a circumflex ${ }^{\wedge}$ overscript, not a \cap overscript. Equations $4-9$ should have subscripts α (alpha), not a (lower case A)
P40 LH col 2nd line under § 2.14: (etc.) $\longrightarrow\left(K_{D}, K_{L}, K_{M}\right.$, etc.)
P40 RH col Table 2.2:
The right hand sides of the Spin Damping Coefficient, Magnus Force Coefficient, and Magnus Moment Coefficient equations ($C_{l_{p}}, C_{N_{p \alpha}}, C_{M_{p \alpha}}$) should all have minus signs, i.e.,

$$
-\frac{8}{\pi} K_{A},-\frac{8}{\pi} K_{F},-\frac{8}{\pi} K_{T}, \text { respectively. }
$$

P41 Table 2.3:
P41 RH col Ref. 9:

Row 3, 4, 5, 6 of columns 2 and 3 are not lined up with column 1
Configuratsl \longrightarrow Configurational (wrong in the manuscript)

Chapter $3 \quad$ PP42-51

H P43 LH col eq. (3.12): $\mathrm{X}=\longrightarrow \mathrm{Y}=$
P44 LH col under eq. (3.16): close up large space between "where" and "R = range..."
P44 LH col under eq. (3.17):
no indent before "where"
P44 LH col 2nd line from bottom:
P44 RH col 2nd line above eq. (3.18):
no indent before "and for..."
P44 RH col 2nd line above eq. (3.20):

$$
\text { to } \phi_{0} \longrightarrow \text { to } \phi_{0} \quad \text { i.e., add space after "to" }
$$ denoted by $\phi_{0} \longrightarrow$ denoted by $\hat{\phi}_{0} \quad$ i.e., add space after "by" and a " \wedge " to " $\phi_{0} "$

P45 LH col 2nd line above eq. (3.21): The beginning of this line should read: velocity, V_{y}, is zero. i.e., $\quad V_{y 0}$ is wrong and falls on top of the word "zero". " V_{y} " should go between the commas.

LH col line below eq. (3.21):

P46 RH col:

P47

RH col 2nd par. line1:
2nd par. line2:
2nd par. line2:
where Y_{S} is \longrightarrow where Y_{S} is i.e., a space after "where"
eq. (3.31) - (3.33) should have " \approx " instead of " $=$ ".
the $\widetilde{X} \longrightarrow$ the $\widetilde{X} \quad$ i.e., a space before \widetilde{X}
" \widetilde{Y} " missing at beginning of the line
the \widetilde{X}-axis \longrightarrow the \widetilde{X}-axis \quad i.e., add space before \widetilde{X}, delete after

$$
\begin{array}{ll}
\text { 2nd par. line3: } & \text { close up space between } " \widetilde{Y}^{\prime \prime} \text { and "- axis" } \\
\text { 2nd par. line4: } & \text { close up space between " } \widetilde{X}^{\prime \prime} \text { and "- axis" }
\end{array}
$$

Chapter $4 \quad$ PP52-87

P55 LH col lines 2,3 below Table 4.1:
P55 LH col line 6 from bottom:

P55 LH col line 5 from bottom:
P55 RH col line 2 below Table 4.1:

P61

P70 RH col line 3 below Fig 4.21:
P70 RH col line 4 below Fig 4.21
P70 RH col line 6 below Fig 4.21:
H P70 RH col line 8 below Fig. 4.21:

Figure is Figure $4.12 \quad$ i.e., change 4.11 to 4.12
nose, $R=R_{T}, \longrightarrow$ nose, $R=R_{T}, \quad$ i.e, insert space after comma parameter $R_{T} / R \longrightarrow$ parameter $R_{T} / R \quad$ i.e, put space before R_{T} / R space between "thus" and " $R_{T} / R=0 "$
comma and space between "therefore" and " $0<R_{T} / R<1$ "
and between " 1 " and "for",
i.e., it should read: therefore, $0<R_{T} / R<1$ for
put comma and space after "i.e." to read: (i.e., $R_{T}=0.5$)
P78 LH col line 6: delete space between "value" and comma
P78 LH col 3rd paragraph line 4, in parenthesis:
$\left(\log _{10} \operatorname{Re} 5.0\right) \longrightarrow\left(\log _{10} R e \approx 5.0\right) \quad$ i.e., insert $" \approx "$ between $R e$ and 5.0
However \longrightarrow However, i.e., delete space before comma
P78 LH col 1st par. of § 4.9 line 5: space between comma and " $C_{D_{0}}$ "

P78 RH col line 4:
bottom of page:
line 6: space between comma and " $C_{D_{\delta^{2}}} "$
space between "and" and " $C_{D_{\delta^{2}}}$ "
P70 RH col line 14 below Fig. 4.21:

	line 6:
RH col line 4:	space between comma and " $C_{D_{\delta^{2}}} "$

these are a single sentence, so should be joined without space or indent.
i.e., to disappear in U.S. Army Ordnance"
number, $p V l s / \mu$, number, $p V l / \mu$, i.e., Equation wrong and space after first comma
where $\mu \longrightarrow$ where $\mu \quad$ i.e., insert space after "where"
coefficient, $C_{D_{0}} \longrightarrow$ coefficient, $C_{D_{0}}$ i.e., space after 1st comma

LH col line 5:
space between "of" and " $C_{D_{\delta^{2}}}$ "
P80 LH col line 15: space between "to" and " $C_{D_{0}}$ "
P80 LH col line 17:
space between "of" and " $C_{D_{0}}$ "
P80 LH col line 4 above § 4.10:

P81 bottom of page:
space between "of" and " $C_{D_{0}}$ "

P83 bottom of page:
Figure is Figure 4.42
i.e., change 4.41 to 4.42

Ref. 1. line 2:
$1893 \longrightarrow 1900$
(wrong in MS)

Chapter 5

PP88-97

P89
RH col line 8: for in $\ldots \longrightarrow$ for $\sum \vec{F}$ in \ldots

$$
\text { i.e., insert } \sum \vec{F} \text { after "for" }
$$

RH col line 4 from bottom: \quad vector, $\vec{g} \longrightarrow$ vector, \vec{g}
i.e., insert space before " \vec{g} "

LH col line 1 above eq. 5.11: product of with... \longrightarrow product of \vec{V} with...

$$
\text { i.e., insert " } \vec{V} \text { " between "of" and "with" }
$$

RH col line 3 of § 5.3:
insert " V_{y} " before and " V_{z} " after "and", and insert " V_{x} " after "component" and before the comma.
Line 3 should read:
RH col line 4 of § 5.3:
velocity components V_{y} and V_{z} are much smaller than the component V_{x} for
RH col line 4 of $\S 5.3$: insert " V_{z} " between the comma and "may"i.e., "crosswind, V_{z} may"
RH col eq. (5.14):
delete the " 1 " after the " $+\ldots$ " and which is in front of the "]"
P90 RH col 3rd line above eq. (5.16):
insert space between "approximation" and " $V \approx V_{x}$ "
i.e., to read: "approximation $V \approx V_{x}$ "

P91 LH col eq. (5.21): $\quad V_{x}^{\prime}=\hat{C}_{D}^{*} V_{x} x \longrightarrow V_{x}^{\prime}=\hat{C}_{D}^{*} V_{x} \quad$ i.e., delete "x" after " V_{x} "

P91

LH col eq. (5.24):
eq. (5.25): left hand integral sign \int should be larger
eq. (5.26), in denominator before large $\left[: \quad V_{x_{0}^{2}} \longrightarrow V_{x_{0}}^{2} \quad\right.$ (wrong in MS) LH col 4th line from bottom: $\quad S_{1}, S_{2}$, and $S_{3} \longrightarrow S_{1}, S_{2}$, and S_{3} i.e., change S to lc RH col eq. (5.31):

LH col eq. (5.33): left hand integral sign \int should be larger
left hand integral sign \int should be larger
LH col eq. (5.33): the upper limit of the $2 \mathrm{nd}(\mathrm{RH})$ integral must be t , not an arbitrary dummy variable s_{2} LH col eq. (5.39), 2nd term in []: $\quad-\frac{1}{V_{x_{0}} k_{1} t} \longrightarrow+\frac{1}{V_{x_{0}} k_{1} t} \quad$ i.e., - to +
LH col eq. (5.39): $\quad 1 n \longrightarrow \ln \quad$ i.e., the numeral 1 should be a lc italic L
LH col eq. (5.39), in the denominator: $\left(1+V_{x_{0}} k_{1} t\right)^{2} \longrightarrow\left(V_{x_{0}} k_{1} t\right)^{2}$
RH col eq. (5.43): $\quad 1 n \longrightarrow \ln \quad$ i.e., the numeral 1 should be a lc italic L

RH col eq. (5.44):
$\left(1-\frac{V_{x_{0}}}{V_{x}}\right) \longrightarrow\left(1+\frac{V_{x_{0}}}{V_{x}}\right)$
(wrong in MS)

P92
P92
P92
RH col eq. (5.45), ;last term:
RH col line 5 of Example 5.1:
RH col eq. (5.47):
P93 LH col line 3 of Example 5.2:
P93 LH col line 8 of Example 5.2:
P93 RH col line under eq (5.56):
P93 RH col eq. (5.58):
H
P93 RH col eq. (5.59):
H P94 LH col eq. (5.63)
P94 RH col eq. (5.67):
P95 RH col Table 5.4":
P96
P96
H P97 Tables 5.7,5.8,5.9 last col:
$1 n \longrightarrow \ln$
i.e., the numeral 1 should be a lc italic L
$0.452 . " \longrightarrow 0.452^{\prime \prime}, \quad$ i.e., replace the period after 0.452 by a comma
$1 n \longrightarrow \ln \quad$ i.e., the numeral 1 should be a lc italic L
and $Y_{0} \longrightarrow$ and $Y_{0} \quad$ i.e., insert space after "and"
and $V_{x} \longrightarrow$ and $V_{x} \quad$ i.e., insert space after "and" no indent before "where"
$1 n \longrightarrow \ln \quad$ i.e., the numeral 1 should be a lc italic L
$\ln \left(1-V_{x_{0}} / V_{x}\right) \longrightarrow \ln \left(\frac{V_{x}}{V_{x_{0}}}\right) \quad$ i.e., the quantity in () is different
$1 n \longrightarrow \ln \quad$ i.e., the numeral 1 should be a lc italic L (2 places)
$k_{3} / \sqrt{M} \longrightarrow k_{3} / \sqrt{V_{x}}$
$V_{x}^{\prime}=\longrightarrow V_{x}=\quad$ i.e., delete the "prime"
$1 n \longrightarrow \ln \quad$ i.e., the numeral 1 should be a lc italic L (2 places)
$1 n \longrightarrow \ln \quad$ i.e., the numeral 1 should be a lc italic L (1 place)
$1 n \longrightarrow \ln \quad$ i.e., the numeral 1 should be a lc italic L (3 places)

Chapter $6 \quad$ PP98-156

P98 LH col 2nd paragraph, line 2:
(Ref. 2b) \longrightarrow (Ref. 2a, Ref. 2b) (wrong in MS)
M P98 RH col eq. (5.8):

M P98 RH col eq. (5.9):
P98 RH col eq. (6.1), 2nd eq:
$K_{3} / M \longrightarrow K_{3} / \sqrt{M} \quad$ i.e., replace M by $\sqrt{ } M$

P100
RH col \{lines $12-14\}$ below eq. (6.41): line 15 below eq. (6.41):

$$
\begin{aligned}
& \text { in.2/lb. } \longrightarrow \mathrm{in}^{2} / \mathrm{lb} \\
& \text { in.4/lb. } 2 \longrightarrow \mathrm{in}^{4} / \mathrm{lb}^{2}
\end{aligned}
$$

P101 LH col 6th line from bottom (in ρ_{0}):
$\mathrm{lb} . / \mathrm{ft} .3 \longrightarrow \mathrm{lb} / \mathrm{ft}^{3}$ i.e., the 3 is a superscript

P103 LH col line 14 (in the eq. for C_{8})
P103 LH col lines 7-9 of Example 6.2: line 10 of Example 6.2:
$(.302)^{2} \longrightarrow(.308)^{2}$
in.2/b. $\longrightarrow \mathrm{in}^{2} / \mathrm{lb}$
$\mathrm{in} .4 / \mathrm{lb} .2 \longrightarrow \mathrm{in}^{4} / \mathrm{lb}^{2}$

P104
P106 RH col line 4 under eq. 644:
Facing P113:

Figure is Figure $6.2 \quad$ i.e., change 6.1 to 6.2
insert "(page 112)" between "chapter" and "lists"
mark page number 112 at the bottom of Table 6.1

P113 Table 6.11. Some of the headings are misplaced to the right. The headings should read:

Reference	Projectile	Nominal	Velocity	Form	Ballistic	Drag
Diameter		Weight	Interval	Factor	Coefficient	Function
(Inches)		(Grains)	(fps)	i	$\mathrm{C}\left(\mathrm{lb} / \mathrm{in}^{2}\right)$	

PP114-156 In the Tables of the Primary Siacci Functions, the order of the entries is velocity V, space function $\mathrm{S}(\mathrm{V})$, altitude function $A(V)$, trajectory inclination function $I(V)$, and time of flight function $T(V)$. For the G_{1} Drag Function (PP 119-124), G6 Drag Function (PP 135-140), G $_{7}$ Drag Function (PP 140-145), and G Gr 2 Drag Function (PP 151-156), the I(V) headings are mislabeled as $T(V)$, leaving two columns labeled $T(V)$.


```
P156 LH col Ref. 3: "1953" in line 3 should be moved up behind "Press," in line 2
    i.e., "Denver Press,1953 "
```


Chapter $7 \quad$ PP157-164

Everywhere in this Chapter:

P157 LH col lines 3-5 2nd par. of § 7.1:
P157 LH col line 2 under § 7.2
P158 LH col line 1:
P158 LH col eq. (7.3):
P158 LH col at eq. (7.11):
P158 RH col eq. (7.14), middle inequality:
P159 LH col line under eq. (7.23):
P159 LH col eq. (7.25):

P159 LH col line below eq. (7.26):
replace all uc subscripts X, Y, Z by lc subscripts x, y, z, respectively; most or all are listed below. These are inconsistent in the MS
uc subscripts $\mathrm{X}, \mathrm{Y}, \mathrm{Z} \longrightarrow$ lc subscripts $\mathrm{x}, \mathrm{y}, \mathrm{z}$, respectively insert space between comma and " V " i.e., "velocity \vec{V}, in" change italic "and" to roman "and"

$$
V_{Z} \longrightarrow V_{z} \quad \text { i.e., subscript } \mathrm{z} \text { should be lc }
$$

no indent before "where"
$V_{X} \longrightarrow V_{x} \quad$ i.e., subscript x should be lc
no indent before "where"
remove $\frac{V_{x}}{V_{x_{0}}}$ from right hand side of equation just to the right of the $=$ space between comma and " $\left|\mathrm{V}_{\mathrm{Z}}\right|$ " i.e., "for all $\mathrm{X},\left|\mathrm{V}_{\mathrm{z}}\right|$ is" with uc subscript Z replaced by lc subscript z

P159 LH col lines 2, 3 below eq. (7.26): uc subscript Z replaced by lc subscript z in two places: W_{z}, V_{z}, respectively
P159 LH col line labove eq. (7.27): uc subscript Z replaced by le subscript z in W_{z}
P159 RH col 2nd line above Table 7.1: uc subscript Z replaced by lc subscript z in W_{z}

P160 RH col line above eq. (7.30): $\mathrm{f}_{\mathrm{WZi}} \longrightarrow \mathrm{f}_{\mathrm{Wzi}} \quad$ i.e., subscript z should be lc

RH col 1st line of eq. (7.30):
RH col 2 nd line of eq. (7.30)

P160 RH col line 4 above Table 7.2:

P160 RH col Table 7.2 3rd heading:
P160 RH col Table 7.2 6th heading:

$\mathrm{f}_{\mathrm{WZi}}$	\longrightarrow	$\mathrm{f}_{\mathrm{Wzi}}$
V_{Xi}	\longrightarrow	V_{xi}
$\mathrm{V}_{\mathrm{X}(\mathrm{i}+1)}$	\longrightarrow	$\mathrm{V}_{\mathrm{x}(\mathrm{i}+1)}$
calber	\longrightarrow	caliber
V_{Xi}	\longrightarrow	V_{xi}
$\left.\mathrm{t}_{\mathrm{xi}}\right)$	\longrightarrow	$\mathrm{t}_{\mathrm{xi}}\left(\mathrm{X}_{\mathrm{i}}\right)$
V_{Xi}	\longrightarrow	V_{xi}
$\mathrm{f}_{\mathrm{WZi}}$	\longrightarrow	$\mathrm{f}_{\mathrm{Wzi}}$

i.e., subscript x should be lc (see eq. (7.29) (wrong in MS)
i.e., subscript x should be lc X should not be a subscript i.e., subscript x should be lc i.e., subscript z should be lc

P162 LH col lines 2,3 below eq. (7.35): uc subscript X replaced by lc subscript x in two places: W_{x}, V_{x}, respectively
P162 LH col eq. (7.38):

P162 RH col eq. (7.40):
the 2 instances of $-\int_{0}^{X} \hat{C}_{D}^{*} d s_{1}$ should be the same (larger) size the 3 instances of $-\int_{0}^{X} \hat{C}_{D}^{*} d s_{1}$, should be the same (larger) size

H RH col eq. (7.40):
P162 RH col eq. (7.43):
there should be a ds_{2} just ahead of the last ")" (missing from MS)

P162 RH col eq. (7.45):

$$
\mathrm{V}_{\mathrm{x}}\left[\mathrm{~V}_{\mathrm{x}}\right] \quad \mathrm{V}_{\mathrm{x}}^{2} \longrightarrow \mathrm{~V}_{\mathrm{x}}\left[\mathrm{~V}_{\mathrm{x}}\right] \approx \mathrm{V}_{\mathrm{x}}^{2} \quad " \approx \text { missing between } " \mathrm{~V}_{\mathrm{x}}\left[\mathrm{~V}_{\mathrm{x}}\right] \text { " and } " \mathrm{~V}_{\mathrm{x}}^{2 "}
$$

$$
\left[\mathrm{V}_{\mathrm{y}}\right] \mathrm{V}_{\mathrm{y}} \quad \longrightarrow \quad\left[\mathrm{~V}_{\mathrm{y}}\right] \approx \mathrm{V}_{\mathrm{y}} \quad " \approx " \text { missing between } "\left[\mathrm{~V}_{\mathrm{y}}\right] " \text { and } " \mathrm{~V}_{\mathrm{y}} "
$$

P163 LH col line below eq. (7.53): $\mathrm{V}_{\mathrm{Y}} \longrightarrow \quad \mathrm{V}_{\mathrm{y}} \quad$ i.e., subscript y should be lc
P164 Tables 7.4 and 7.5 headings: $V_{X} \longrightarrow V_{x} \quad$ i.e., subscripts x and y are lower case $\mathrm{V}_{\mathrm{Y}} \longrightarrow \mathrm{V}_{\mathrm{y}} \longrightarrow \quad$ for consistency with Table 7.3

Chapter $8 \quad$ PP165-186

RH col eq. (8.24):
delete the "-78" no indent before "where"

$$
\begin{equation*}
f_{\rho\left(R_{H}\right)}=1-.00378 R_{H}\left(\frac{P_{W V}}{29.92}\right) \tag{8.24}
\end{equation*}
$$

i.e., eq. (8.24) should read

H P168 LH col 2 line 2 below Table 8.1: P168 LH col eq. (8.26):
vapor pressure at the local \longrightarrow vapor pressure at saturation at the local delete the " -78 " i.e., eq. (8.26) should read

$$
\begin{equation*}
f_{a_{0}\left(R_{H}\right)}=1+.0014 R_{H}\left(\frac{P_{W V}}{29.92}\right) \tag{8.26}
\end{equation*}
$$

H P168 2nd col of Table 8.2:
H
Water Vapor Pressure \longrightarrow Water Vapor Pressure At Saturation $(\mathrm{In} ., \mathrm{Hg}) \longrightarrow(\mathrm{In}, \mathrm{Hg})$

LH col line 13 below Table 8.4:
(MS not consistent with layout of book)

P178 LH col line 1: at the beginning of the line, delete space between " $\beta=\sqrt{\sec \phi_{0}} "$ and the comma

P178 RH col eq. (8.29):
H RH col line 5 from bottom:

P179 LH col eq. (8.33):
P179 RH col eq. (8.40):
P179 LH col eq. (8.45):
$-V_{x} \longrightarrow V_{x}$
V_{X} and $V_{Z} \longrightarrow V_{x}$ and $V_{z} \quad$ i.e., subscripts x and z are lc
$\dot{V}_{x} \longrightarrow V_{x}$
$\sqrt{Y_{s}^{3} g} \longrightarrow \sqrt{Y_{s}^{3} / g} \quad$ i.e., insert /
lc subscripts x to uc subscripts X and lc "oh" to "zero" i.e.,

$$
V_{\mathrm{x}}=V_{\mathrm{xo}} \longrightarrow V_{\mathrm{X}}=V_{\mathrm{x} 0}
$$

P180	LH col eq. (8.53):	lc subscripts x to uc subscripts X and lc "oh $V_{\mathrm{xo}} \longrightarrow V_{\mathrm{X} 0}$	" to "zero"	i.e.,
P180	LH col line below eq. (8.53):	insert " \geq " between $" \cos L^{\prime \prime}$ and "0"	i.e.,	$\cos L \geq 0$
P180	RH col Table 8.8, headings of $\operatorname{col} 3$ and $\operatorname{col} 4: \quad \mathrm{VXO} \longrightarrow \mathrm{V}_{\mathrm{x} 0}$			
P181	RH col line 5 above Figure 8.16:	$C D \longrightarrow C_{D}$		
P182	Table 8.11, $\operatorname{col} 4$:	insert " Δ " before "-Range"	i.e.,	Δ-Range
P182	Table 8.11, col 5:	insert " Δ " before "-Deflection"	i.e.,	Δ-Deflection
P183	LH col line 3:	insert " Δ " in front of " 's "		Δ 's
P183	LH col line 3:	delete space between "dif" and "ferences"		differences
P183	LH col paragraph 3 line 2: insert	" Δ " before "-Range"	i.e., Δ-Ran	
P183	LH col paragraph 3 line 2: insert	" Δ " before "-Deflection"	i.e., Δ-Defl	ection

Errors in MCTRAJ Computer Program

P183 line numbers:

10	MCTRAI.BAS	\longrightarrow	MCTRAJ.BAS
90	COErilCIENT	\longrightarrow	COEFFICIENT
110	LBON 2	\longrightarrow	LB/IN 2
130	MINtEIES	\longrightarrow	MINUTES
150	lso	\longrightarrow	150
180	FIR]NG	\longrightarrow	FIRING
190	OmON	\longrightarrow	OPTION
340	(LINE 2)		
	(V-FTIsEc)		

P184

520	COE "ICIENT	\longrightarrow COEFFICIENT		
530	[RETURN 1	\longrightarrow [RETURN]		
580	VVHICH	\longrightarrow WHICH		
680	M(J'ABS(M (J))	$\longrightarrow \mathrm{M}(\mathrm{J})=\mathrm{ABS}(\mathrm{M}(\mathrm{J})$)		
1040	DlNT=1\#	\longrightarrow DINT $=1 \#$		
1100	TK1C	\longrightarrow TK1 =		
1130	W1	$\longrightarrow \mathrm{VV} 1$		
1200	W1	$\longrightarrow \mathrm{VV1}$		
1290	(LBON 2)	$\longrightarrow(\mathrm{LB} / \mathrm{IN} 2)$		
1520	IFN1	\longrightarrow IF Nl	i.e.,	insert a space
1660	lillS	\longrightarrow THIS		
1720	TRA-TECTORY	\longrightarrow TRAJECTORY		
1760	INITIALT7:F.	\longrightarrow INITIALIZE		

P185

1830	R4--	\longrightarrow
1900	22	
1910	22	
2070	PR7--	
2200	LB1N2	\longrightarrow
\mathbf{H}	1NCHES	\longrightarrow

2220	1NT	\longrightarrow	INT	
2400	Q(D		$\mathrm{Q}(1)$;	
	all commas	olons		(wrong in MS)
	all lower case L			i.e., numeral one
2510	W1	\longrightarrow	VVI	
2550	C4-C3*C1*B 1	\longrightarrow	$\mathrm{C} 4=\left(\mathrm{C} 3 * \mathrm{C} 1 * \mathrm{~B} 1^{*}\right.$	
2550))fV3	\longrightarrow))/V3	
2560	Wl	\longrightarrow	W1	i.e., lower case L to numeral one
2640	V8--	\longrightarrow	V8=	
2680	Tkl+Tk2*Hl	\longrightarrow	Tk1+Tk2*H1	i.e., lower case L to numeral one
2690	W1	\longrightarrow	VV1	
2700	B2fV1	\longrightarrow	B2/V1	
2730))fV6	\longrightarrow))/V6	
2750	GfV6	\longrightarrow	G/V6	
2810	fB2	\longrightarrow	/B2	
2840	H1	\longrightarrow	H1	i.e., lower case L to numeral one
2850	D1	\longrightarrow	D1	i.e., lower case L to numeral one
2910	--	\longrightarrow	$=$	
2920	--	\longrightarrow	$=$	
2940	--	\longrightarrow	$=$	
2970	--	\longrightarrow	$=$	
3000	--	\longrightarrow	=	

P185

3040	$3040 \mathrm{IFL}=$	\longrightarrow	3040 IF $\mathrm{L}=$
3080	$\mathrm{~T}(\mathrm{~N}=$	\longrightarrow	$\mathrm{T}(\mathrm{N})=$
3100	$\mathrm{~W}(\mathrm{~N}=$	\longrightarrow	$\mathrm{W}(\mathrm{N})=$
3140	all commas \longrightarrow	semicolons	
3280	IF $\mathrm{P}=2=$		IF J ≥ 2

P186

3340	($\mathrm{H} 3-\mathrm{H}(\mathrm{O} *(\mathrm{E}(\mathrm{J}-1)-(\mathrm{J}) /$	$\longrightarrow(\mathrm{H} 3-\mathrm{H}(\mathrm{J})) *(\mathrm{E}(\mathrm{J}-1)-\mathrm{E}(\mathrm{J}))^{\prime}$	
3360	WIIH	\longrightarrow WITH	
3590	3590NEXTI	$\longrightarrow 3590$ NEXT I	
3680	LB1N2	\longrightarrow LB/IN2	
3750	(1NCHES)	\rightarrow (INCHES)	
3810	line 2: (1N)	\longrightarrow (IN)	
3840	all commas to semicolons		(wrong in MS)
3850	NEXTN	\longrightarrow NEXT N	
4040	$\mathrm{xl}<\mathrm{M}(\mathrm{I}+\mathrm{l})$	$\longrightarrow \mathrm{X} 1<\mathrm{M}(\mathrm{I}+1)$	
4070	change both ($\mathrm{I}+1)$ to (I+1)		i.e., lower case L to numeral one

Chapter $9 \quad$ PP187-220

P187 LH col line 9 under § 9.1: "(Ref. 2)" shouldn't be indented but follow after "Kent" on line 8 i.e., "Kent (Ref. 2) at"

RH col line 12: delete space between " $I_{x} p \vec{x}$ " and comma

P188 RH col line 4 above eq. (9.3):

$$
I_{Y} \longrightarrow I_{y} \quad \text { i.e., change cap Y to lc y }
$$

P188 RH col 2nd line above eq. (9.3): the sentence after "mass." is unclear unless an " \vec{H} " is inserted between "momentum" and "is" i.e., i.e., "The total projectile vector angular momentum \vec{H} is therefore...." (not in MS, but in the next-to-last draft)

P189 LH col line 2: " $\frac{d \vec{x}}{d t}$ " in line 2 extends into line 3. It should be written " $d \vec{x} / d t "$ to avoid this.
P189 RH col line 15: $\mathrm{d}^{2} / 4 \longrightarrow \pi \mathrm{~d}^{2} / 4 \quad$ i.e., insert π, move superscript next to
P189 RH col 8th line from bottom: $\quad C_{M_{\dot{\alpha}}} \longrightarrow C_{N_{\dot{\alpha}}} \quad$ i.e., change M to N to get $\left(C_{N_{q}}+C_{N_{\dot{\alpha}}}\right)$

P190 RH col line 2 under eq. (9.15): $\quad v_{2}=\longrightarrow v^{2}=\quad$ i.e., change subscript to superscript
M P190 RH col 5th eq below eq. 9.15: $\quad p=\frac{I_{x}}{I_{y}}(\vec{h} \bullet \vec{x}) \longrightarrow \quad p=\frac{I_{y}}{I_{x}}(\vec{h} \bullet \vec{x}) \quad$ i.e., switch subscripts x, y

P191 LH col Table 9.1 (heading of RH col): $\left[\mathrm{E}_{2}-\mathrm{X}_{2}\right] \longrightarrow\left[\mathrm{E}_{2}-\mathrm{X}_{2}\right]$ (Inches) i.e. units missing
P192 LH col, 1st paragraph line 1: vector, $\vec{x} \quad \longrightarrow \quad$ vector, \vec{x}, \quad i.e., change spacings by commas
P192 LH col, 1st paragraph line 2: \vec{y} and $\vec{z} \longrightarrow \vec{y}$ and $\vec{z} \quad$ i.e., put space before and after "and"
P192 LH col 1st paragraph line 6: $(\vec{z} \times \vec{x}) . \longrightarrow(\vec{z} \times \vec{x}) . \quad$ i.e., delete space before period
P192 LH col, eq. (9.23), right side of equation, center expression: $\sin \left(\theta_{0}+\alpha_{0}\right) \longrightarrow \sin \left(\phi_{0}+\alpha_{0}\right)$
C P192 LH col, rhs of eq. (9.24), center expression: replace $\cos \left(\phi_{0}+\alpha_{0}\right)$ by $\cos ^{2}\left(\phi_{0}+\alpha_{0}\right) \quad$ (wrong in MS) i.e., $\quad \cos ^{2}\left(\theta_{0}+\beta_{0}\right) \cos \left(\phi_{0}+\alpha_{0}\right)+\sin ^{2}\left(\theta_{0}+\beta_{0}\right) \longrightarrow \cos ^{2}\left(\theta_{0}+\beta_{0}\right) \cos ^{2}\left(\phi_{0}+\alpha_{0}\right)+\sin ^{2}\left(\theta_{0}+\beta_{0}\right)$

P192 LH col, eq. (9.26):
C P192 LH col, line above eq. (9.27):
The vector $d \overrightarrow{\mathbf{x}}_{\mathbf{0}} / d t$ is given by:

$$
\begin{equation*}
d \overrightarrow{\mathbf{x}}_{0} / d t=\vec{\omega}_{0} \times \overrightarrow{\mathbf{x}}_{0}=\left(\vec{\omega}_{0} \bullet \overrightarrow{\mathbf{z}}_{0}\right) \overrightarrow{\mathbf{y}}_{0}-\left(\vec{\omega}_{0} \bullet \overrightarrow{\mathbf{y}}_{0}\right) \overrightarrow{\mathbf{z}}_{0} \tag{9.27a}
\end{equation*}
$$

where the components of the column vector $\vec{\omega}_{\mathbf{0}}$ are $\left(\omega_{1_{0}}, \omega_{2_{0}}, \omega_{3_{0}}\right)$ and are in the earth-fixed system. If $\omega_{\mathbf{z}_{0}}$ and $\omega_{\mathbf{y}_{0}}$ are defined by

$$
\begin{equation*}
\omega_{z_{0}}=\vec{\omega}_{\mathbf{0}} \bullet \overrightarrow{\mathbf{z}}_{\mathbf{0}} \quad \text { and } \quad \omega_{y_{0}}=\vec{\omega}_{\mathbf{0}} \bullet \overrightarrow{\mathbf{y}}_{\mathbf{0}} \tag{9.27b}
\end{equation*}
$$

then $d \overrightarrow{\mathbf{x}}_{\mathbf{0}} / d t$ is given by:
P192 RH col eq. (9.31), right hand side, center expression: $\quad+x_{1_{0}} \dot{x}_{3_{0}} \longrightarrow-x_{1_{0}} \dot{x}_{3_{0}} \quad$ i.e., + to -
P192 RH col eq. (9.31), right hand side, bottom expression: $\quad+x_{2_{0}} \dot{x}_{1_{0}} \longrightarrow-x_{2_{0}} \dot{x}_{1_{0}} \quad$ i.e., + to -
P192 RH col line 3 above eq. (9.32): " $\frac{d \vec{x}}{d t} "$ extends into the line below. Better written as " $d \vec{x} / d t$ "

P193 RH col line 2:

P194 LH col line 3 below eq. (9.37):
P194 LH col line 3 above Fig 9.2:

P196 LH col line 2 below Fig 9.5:
P196 LH col line 14 below fig 9.5:
$\mathrm{f}(\mathrm{x}, \mathrm{y}) \longrightarrow \mathrm{f}(\mathrm{x}, \mathrm{y}) \quad$ i.e., delete space between " f " and "("
value, $\vec{x}_{0}, \longrightarrow$ value, \vec{x}_{0}, i.e., change spacings by commas product, $\vec{x} \bullet \vec{x} \longrightarrow$ product, $\vec{x} \bullet \vec{x} \quad$ i.e., insert space after comma yaw rate,, \longrightarrow yaw rate, $\omega_{y_{0}}$, i.e., insert $\omega_{y_{0}}$ between commas
angle, α, \longrightarrow angle, α, i.e., change spacings by commas

RH col line 8:
RH col line 10 :
P201 RH col line 6 above Fig 9.11:

P202 LH col line 5:
H P202 LH col line 4 from bottom:
of $C_{M_{\alpha}} \longrightarrow$ of $C_{M_{\alpha}}$
attack, $\alpha_{t}, \longrightarrow$ attack, α_{t}, where $\alpha \longrightarrow$ where α attack, \longrightarrow attack, α_{t}, attack, $\alpha_{t}, \longrightarrow$ attack, α_{t}, i.e., change spacings by commas put parens around $\left(\alpha_{R}\right)$ and delete 1 space between it and "component"

This would read much better if parts of lines 5 and 4 from bottom were changed to read: a significant vertical $\left(\alpha_{R}\right)$ "pitch of repose" component,

P202 RH col line 13:

P204 LH col line 17:
H P204 LH col 3rd paragraph line 1:
P204 LH col line 8 from bottom:

P212 RH col line below eq. (9.39):

H P213 LH col line 3 below eq. (9.44):
P213 LH col line 3 below eq. (9.44):
H P213 RH col rhs of eq. (9.49):
P213 RH col line under eq. (9.49):

P214 LH col eq. (9.57):
P214 RH col line 3 above eq. (9.62):

P216 LH col line 19 from bottom:
P216 RH col line 7 under example 9.5:

P217 headings just under "contour sketch":

P218 RH col line 8 under notes:
P218 col 7 under "contour sketch":
$C_{l_{\alpha}} \longrightarrow C_{L_{\alpha}}$
$C_{l_{\alpha}} \quad \longrightarrow C_{L_{\alpha}} \quad$ i.e., uc subscript L last entry (2.5) doesn't line up with others by one space

P220 2nd table under the "contour sketch" and to right of "Notes":
last 2 entries of col $3(.9, .95)$ belong after the .85 in col 5;
-468 of col 4 belongs under -357 in col 6;
-745 of col 5 belongs under the moved -468 in col 6

P220 The references given for chapter 9 are an exact duplicate of the references for chapter 10 (on P239). The chapter 9 references are completely missing! The final draft of the Chapter 9 references is appended at the end.

H In Chapters 10 through 14, there are two inconsistent representations of C^{*} with a subscript $C_{\text {whatever }}{ }^{*}$ and $C_{\text {whatever }}^{*}$. The latter should be used everywhere.

Chapter 10

PP221-239

P221 RH col, eq. (10.2):

$$
m \frac{d \vec{H}}{d t} \longrightarrow \frac{d \vec{H}}{d t} \quad \text { i.e., no "m" }
$$

P221 RH col, 2nd line from bottom: $\vec{V} \quad, \longrightarrow \vec{V}$,
i.e., close up space before comma

P223 LH col, 3rd line above eq. (10.4): to $\vec{x} \longrightarrow$ to $\vec{x} \quad$ i.e., insert space after "to"
P223 LH col, eq. (10.5): minus sign missing

$$
\text { i.e., } \quad \text { Drag Force }=\frac{1}{2} \rho S C_{D} V \vec{V} \longrightarrow \text { Drag Force }=-\frac{1}{2} \rho S C_{D} V \vec{V}
$$

LH col, eq. (10.7):
$v^{2} \longrightarrow V^{2} \quad$ i.e., uc V
LH col, eq. (10.10) 1st line: $C_{M p \alpha} \longrightarrow C_{M_{p \alpha}}$ 2nd line: $\quad C_{M_{p a}} \longrightarrow C_{M_{p \alpha}} \quad$ i.e., $a \longrightarrow \alpha$ (alpha)
P223 RH col line 15: $\mathrm{d}^{2} / 4 \longrightarrow \pi \mathrm{~d}^{2} / 4$ i.e., insert π, move superscript next to d

P224 RH col, 2nd line above eq. (10.22): vector with \vec{i} both \longrightarrow vector \vec{i} with both i.e., switch words

P225 LH col line after eq. (10.31):
P225

P225
LH col, eq. (10.32):
no indent of line beginning with "Equation"
$\frac{V}{D} \longrightarrow \frac{V}{d} \quad$ i.e., change to lc d
LH col, eq. (10.37), 2nd line, 1st term: $\quad I_{y}\left(\frac{d \vec{\omega}}{d t} \bullet \vec{x}\right) \longrightarrow-I_{y}\left(\frac{d \vec{\omega}}{d t} \bullet \vec{x}\right) \quad$ i.e., insert "-"
RH col, eq. (10.38), 2nd line, 1st term: $\quad I_{x} p(\vec{\omega} \times \vec{x}) \longrightarrow+I_{x} p(\vec{\omega} \times \vec{x}) \quad$ i.e., insert " + "
RH col, eq. (10.38), 3rd line, 1st term: insert "+"

$$
\text { i.e., } \quad \frac{1}{2} \rho S d C_{M_{\alpha}} V^{2}(\vec{i} \times \vec{x}) \quad \longrightarrow \quad+\frac{1}{2} \rho S d C_{M_{\alpha}} V^{2}(\vec{i} \times \vec{x})
$$

RH col, eq. (10.38), 4th line, 1st term: insert " + " and lower the subscript " q "
i.e., $\quad \frac{1}{2} \rho S d^{2} C_{M q} V\left(\vec{x} \times \frac{d \vec{x}}{d t}\right) \quad \longrightarrow \quad+\frac{1}{2} \rho S d^{2} C_{M_{q}} V\left(\vec{x} \times \frac{d \vec{x}}{d t}\right)$

RH col, eq. (10.38), ${ }^{\text {th }}$ line, 2nd term: $C_{M \delta} \longrightarrow C_{M_{\dot{\alpha}}} \quad$ i.e. subscript $\dot{\alpha}$
RH col line below eq. (910.38): and \longrightarrow and i.e., change ital. "and" to roman "and"
RH col, eq. (10.41),1st line, 1st term: $\quad\left(\vec{x} \frac{d^{2} \vec{x}}{d t^{2}}\right) \quad \longrightarrow \quad\left(\vec{x} \times \frac{d^{2} \vec{x}}{d t^{2}}\right)$
RH col, eq. (10.41), 2nd line, last term: $\quad p c_{M_{p \alpha}} \quad \longrightarrow \quad P C_{M_{p \alpha}} \quad$ i.e. uc p and c
RH col, eq. (10.41), 3rd line, last term: $\quad C_{M_{\dot{\delta}}}^{*} \quad \longrightarrow \quad C_{M_{\dot{\alpha}}}^{*} \quad$ i.e. subscript $\dot{\alpha}$
RH col, 5th line from bottom, middle equation: $\quad C_{M_{\alpha}}^{*} \longrightarrow C_{M_{p \alpha}}^{*} \quad$ i.e. subscript $p \alpha$ RH col, 4th line from bottom: $\quad C_{M_{\alpha}}^{*}=\frac{\rho S d}{2 m} C_{M_{\alpha}} \longrightarrow C_{M_{\dot{\alpha}}}^{*}=\frac{\rho S d}{2 m} C_{M_{\dot{\alpha}}} \quad$ i.e. subscripts $\dot{\alpha}$ i.e., insert dot over both subscripts α
LH col, line 9:
of $\alpha \longrightarrow$ of α
i.e., insert space after "of"
RH col, line 4, 3rd term of eq. (10.64):
$P\left(\beta^{\prime}-a \alpha^{\prime}\right)$ $P\left(\beta^{\prime}-i \alpha^{\prime}\right)$

P230 LH col eq. (10.85):
P231 LH col, table 10.1:
P231 LH col eq. (10.90):
P231 LH col eq. (10.91):
P232 LH col, eq. (10.92):

RH col eq. (10.65) 1st, 3 rd terms after $=$ sign: $\quad k_{\gamma}^{-2} \longrightarrow k_{y}^{-2} \quad$ i.e., change subscript γ to y
$k_{\gamma}^{-2} \longrightarrow k_{y}^{-2} \quad$ i.e., change subscript γ to y

RH col eq. (10.66); $\quad+-i P G \longrightarrow=-i P G \quad$ i.e., change + after ξ to $=$
RH col 2nd eq (for P) below eq. (10.66): $\quad I_{\gamma} \longrightarrow I_{y} \quad$ i.e., change subscript γ to y
RH col 3 rd eq (for M) below eq (10.66): $\quad k_{\gamma}^{-2} \longrightarrow k_{y}^{-2} \quad$ i.e., change subscript γ to y
LH col, last line: $\quad V_{0}$ is $\longrightarrow \quad V_{0}$ is i.e., insert space before "is"
LH col, eq. (10.79): should be a box around the equation, as in the MS
$\alpha+i \beta \quad \longrightarrow \quad \alpha+i \beta, \quad$ i.e., delete spaces before comma in denominator $\quad p \longrightarrow \rho \quad$ (lc Greek rho)

The last 2 lines should be separated from the third from last by a horizontal line as in the MS
should be a box around the equation, as in the MS
should be a box around the equation, as in the MS
The minus sign in front of the right hand term is so close to the fraction bar that it is hard to see.
P232 RH col, last 3 lines of eq. (10.94): These lines should start at the same indent as the previous ϕ_{S} line
P232 RH col, line below eq. (10.97): $\quad|P T| \ll|M| \quad \longrightarrow|P T| \ll|M|$, i.e., delete spaces before comma
P233 LH col, 2nd paragraph of § 10.9 1st line: λ_{F} and $\quad \longrightarrow \quad \lambda_{F}$ and \quad i.e., insert space before "and" 2nd line, $\lambda_{S}, \longrightarrow \lambda_{S}, \quad$ i.e., delete spaces before comma
P233 LH col, line 5 above eq. (10.106): $\left(C_{M_{q}}+C_{M_{\dot{\alpha}}}\right), \longrightarrow\left(C_{M_{q}}+C_{M_{\dot{\alpha}}}\right)$, i.e., delete space before comma P233 LH col, eq. (10.107): This equation should be in a box, as in the MS.

P234 RH col, eq. (10.115), 2nd term:

$e^{i \phi_{s}}$	\longrightarrow	$e^{i \phi_{S}}$
$i \phi_{S}^{\prime}$	i.e., uc S	
$i \phi_{s}^{\prime}$	\longrightarrow	i.e., uc S
$\mathrm{S}=0$	\longrightarrow	i.e., $\mathrm{s}=0$

P235 RH col, line 17
P235 RH col, line 18:
P235 RH col, line 19:
P235 RH col, line 20:
insert space after semicolon insert space after semicolon insert space before "radians/" in two places percaliber \longrightarrow per caliber in two places

P237 LH col, line under eq. (10.127): $\theta \quad, \quad \theta, \quad$ i.e., delete space before comma
P237 LH col, line 9:

i.e., add the prime to \vec{k}

B P237 RH col, eq. (10.128) right hand side: $\quad i A e^{i \phi} \longrightarrow A e^{i \phi} \quad$ i.e., delete the factor i (wrong in MS)
P237 RH col, eq. for A below eq. (10.128): square brackets are missing, i.e., it should read

$$
A=\frac{\rho S d}{2 m}\left[k_{y}^{-2}\left(C_{m_{0}}+i C_{n_{0}}\right)+\left(\phi^{\prime}-1\right)\left(C_{Y_{0}}+i C_{Z_{0}}\right)\right]
$$

P237
RH col, line 12, 2nd equation: $\quad \phi=\int_{0}^{S} \phi^{\prime} d s_{1} \longrightarrow \phi=\int_{0}^{s} \phi^{\prime} d s_{1}$
i.e., lc "s" in limit of integral

B P237 RH col, eq. (10.131), numerator of RHS: $-i A \longrightarrow-A \quad$ i.e., delete the factor i (wrong in MS)

Chapter 11
 PP240-251

H P241 LH col, lines 3,4: $\quad \mathrm{S}=\mathrm{d}^{2} / 4 \longrightarrow \mathrm{~S}=\pi \mathrm{d}^{2} / 4 \quad$ i.e., insert Greek π and move ${ }^{2}$ closer to d
P241 LH col, 2 lines below eq. (11.3): $\vec{i} \bullet \vec{x}=\gamma \quad$, $\longrightarrow \vec{i} \bullet \vec{x}=\gamma, \quad$ i.e., delete space before comma
H P241 LH col, 3 lines below eq. (11.5): $\quad \phi$ and $\theta \quad \longrightarrow \quad$ i.e., change spacings
P242 LH col, line under eq. (11.21): definition into \longrightarrow definition $\left(V^{\prime} / V\right)=-C_{D}^{*}$ into

P242 RH col, $\mathrm{K}_{\mathrm{s} 0}$ term of eq. (11.30): all s are cap S except the last one after the ")"

$$
K_{s_{0}} e^{i \phi_{s_{0}}} e^{\left(\lambda_{s}+i \phi_{s}^{\prime}\right) s} \quad \longrightarrow K_{S_{0}} e^{i \phi_{S_{0}}} e^{\left(\lambda_{S}+i \phi_{s}^{\prime}\right) s}
$$

RH col eq. (11.46):
$P=\phi_{F}^{\prime}-\phi_{S}^{\prime} \quad \longrightarrow \quad P=\phi_{F}^{\prime}+\phi_{S}^{\prime}$
i.e., a product, as in MS

RH col, in 1 st term of 2 nd line of eq. (11.38): $\quad-\frac{1}{\phi_{s}^{\prime 2}} \longrightarrow-\frac{1}{\phi_{S}^{\prime 2}} \quad$ i.e., uc subscript S
RH col, line below eq. (11.38): coefficient, $C_{L_{\alpha}}{ }^{*}, \longrightarrow$ coefficient, $C_{L_{\alpha}}{ }^{*}, \quad$ i.e., add space before C

RH col eq. (11.45):
$\phi_{F}^{\prime}-\phi_{S}^{\prime} \quad \longrightarrow \quad \phi_{F}^{\prime} \phi_{S}^{\prime}$
i.e., + as in MS

P245 LH col line 9 below Fig. 11.2: yaw, ξ_{0}, \longrightarrow yaw, ξ_{0}, \quad i.e., change spacings by commas
P245 LH col last line: that $\xi_{0} \longrightarrow$ that $\xi_{0} \quad$ i.e., insert space after "that"

P246 RH col, last term of eq. (11.49): $K_{s_{0}} \longrightarrow K_{S_{0}} \quad$ i.e., cap S
P246 RH col eq. (11.49): This equation should be in a box, as in the MS.

P248 LH col line 4 below Fig 11.4: $\quad\left(\lambda_{S} \longrightarrow \quad\left(\lambda_{S} \quad\right.\right.$ unclear unless insert space between "(" and " λ "
P248 RH col line 10 from bottom: determine $C_{L_{\alpha}} \longrightarrow$ determine $C_{L_{\alpha}} \quad$ i.e., insert space before $C_{L_{\alpha}}$

P249
P249
P249

P250

Chapter 12 PP252-272

RH col 2nd line before Fig 12.3

LH col 3rd line below eq. (12.9): $(2 / \mathrm{n}) \longrightarrow(2 \pi / \mathrm{n})$
e., insert π
i.e,, add \rightarrow on top of y everywhere else in the book by $\hat{\varepsilon}$

P264 LH line 8 from top:

LH col line 4 from bottom:
yaw, ξ_{0}, \longrightarrow yaw, ξ_{0}, \quad i.e., insert space before ξ_{0}

LH col line 3 from top: RH col line under eq. (12.95): approximate with throughout \longrightarrow approximate $V_{x_{0}}$ with V_{x} throughout

LH col 3rd line below heading 12.10: Stern \longrightarrow Sterne
i.e., add e, as in refs 9,10 .

RH col line 3 above eq. (12.100): rate, $\xi_{0}^{\prime} \longrightarrow$ rate, $\xi_{0}^{\prime} \quad$ i.e., insert space before ξ_{0}^{\prime} $R H$ col line 2 above eq. (12.100): yaw, $\xi_{0} \longrightarrow$ yaw, $\xi_{0} \quad$ i.e., insert space before ξ_{0}

Chapter $13 \quad$ PP273-298

coefficient, $C_{D_{0}}, \longrightarrow$ coefficient, $C_{D_{0}}$, i.e., insert space before $C_{D_{0}}$, delete space after

$$
\left.\left.d^{2} / 4\right) \longrightarrow \pi d^{2} / 4\right) \quad \text { i.e., insert } \pi, \text { close up spaces }
$$

$$
C_{M_{a(R)}} \quad, \longrightarrow C_{M_{a(R)}}, \quad \text { i.e., delete space before comma }
$$

$$
C_{M_{a_{0}}} \quad, \longrightarrow C_{M_{a_{0}}}, \quad \text { i.e., delete space before comma }
$$

$$
, C_{M_{a_{2}}} \quad, \longrightarrow, C_{M_{a_{2}}}, \quad \text { i.e., change spacings by commas }
$$

This equation should be in a box, as in the MS.
$d^{2} / 4 \longrightarrow \pi d^{2} / 4 \quad$ i.e., insert π

P280
RH col eq. (13.19):
RH col line 2 from bottom:

P281 RH col line 1 first 2 terms of eq13.37:

$$
2 \lambda_{F}-\phi_{F}^{\prime} \longrightarrow 2 \lambda_{F} \phi_{F}^{\prime} \quad \text { i.e., delete minus sign to get } 1 \text { term }
$$

P281 RH col eq. (13.42) 2nd term after = sign:

$$
K_{F}^{2}+K_{S}^{2} \longrightarrow K_{F}^{2}-K_{S}^{2} \quad \text { i.e., change }+ \text { to }-
$$

RH col line 2 below eq. (13.44): although "definition" is in the MS, it is actually shown as an approximation in eq. (13.42). Therefore "definition" should be replaced by "approximation".
P281 RH col eq. (13.46): $-H_{0} \phi_{S}^{\prime} \longrightarrow+H_{0} \phi_{S}^{\prime} \quad$ i.e., change - to +
P282 LH col eq. (13.53) in []: $\frac{\phi_{F}^{\prime}-\phi_{S}^{\prime}}{\phi_{F}^{\prime}-\phi_{S}^{\prime}} \longrightarrow \frac{\phi_{F}^{\prime}+\phi_{S}^{\prime}}{\phi_{F}^{\prime}-\phi_{S}^{\prime}} \quad$ i.e., + in numerator, not -

P287 LH col both lines above eq. (13.58):
replace "curve of Figure 13.16 with a seventh-power (or higher) series expansion, stated as equation (13.58):"
by "with a seventh-power (or higher) series expansion, which yields the Magnus moment coefficient $C_{M_{p \alpha}}$ in even powers as eq. (13.58):"
LH col: replace eq.(13.58) with $\quad C_{M_{p \alpha}}=C_{M_{p \alpha_{0}}}+C_{M_{p \alpha_{2}}} \sin ^{2} \alpha+C_{M_{p \alpha_{4}}} \sin ^{4} \alpha+C_{M_{p \alpha_{6}}} \sin ^{6} \alpha+\bullet \bullet \bullet$

$$
\begin{array}{rll}
\text { RH col eq. (13.60) }-H_{0} \phi_{S}^{\prime} & \longrightarrow+H_{0} \phi_{S}^{\prime} & \text { i.e., change }- \text { to }+ \\
+P\left(T_{0}+T_{2} \delta_{e S}^{2}\right) & \longrightarrow-P\left(T_{0}+T_{2} \delta_{e S}^{2}\right) & \text { i.e., change }+\mathrm{P} \text { to -P }
\end{array}
$$

LH col line 3 from bottom: $\quad C_{M_{p \alpha_{0}}}, \longrightarrow C_{M_{p \alpha_{0}}}$,
LH col line 2 from bottom: $\quad C_{M_{p \alpha_{2}}}, \longrightarrow C_{M_{p \alpha_{2}}}$,
RH col line 9 below sketch: $\quad \lambda_{F} 0 \longrightarrow \lambda_{F} \approx 0$

LH col line 2: coefficient, $C_{L_{\alpha}}, \longrightarrow$ coefficient, $C_{L_{\alpha}}$,
RH col:
RH col line 2 below eq. (13.73): $\quad \hat{C}_{M_{\alpha}}, \longrightarrow \hat{C}_{M_{\alpha}}$,
$C_{D_{0}}, \longrightarrow C_{D_{0}}$,
i.e., delete space before comma
i.e., delete space before comma
i.e., insert " $\approx=$
i.e., change spacings by commas i.e., change 13.26 to 13.28
i.e., delete space before comma
i.e., delete space before comma

P295

P297 P297

P298
RH col reference 15: insert blank line above ref. 15 .

Chapter 14
 PP299-328

P305 RH col line 4 below eq. (14.lc): $\quad C_{l_{p}}, \longrightarrow C_{l_{p}}$
RH col line 7 below eq. (14.1c): $\quad C_{l_{p}}, \longrightarrow C_{l_{p}}$,
i.e., delete the second period
i.e., delete space before period
i.e., delete space before comma
i.e., delete space before comma
i.e., insert space after "and"
i.e., delete the prime
i.e., delete space before comma
i.e., delete space before comma

P305 RH col eq. (10.94): There should be a box around the equation, as in MS

P306 LH col eq. (11.29): There should be a box around the equation, as in MS
P306 RH col line 1: $\tan \phi_{0}, \longrightarrow \tan \phi_{0}, \quad$ i.e., delete space before comma
P306 RH col line 3: $\tan \theta_{0}, \longrightarrow \tan \theta_{0}, \quad$ i.e., delete space before comma
P306 RH col line 2 below eq. (14.11): coefficient, $C_{L_{\alpha}}, \longrightarrow$ coefficient, $C_{L_{\alpha}}$,
i.e., insert space before and delete space after $C_{L_{\alpha}}$

P309
LH col lines 5,6,8: $\quad C \longrightarrow, C \quad$ i.e., add space before all C symbols
e.g., (line 5) $\quad C_{D} \longrightarrow, C_{D}$

P309 LH col line 10: Coefficients $C_{l_{p}}, \longrightarrow$ Coefficients, $C_{l_{p}}$, i.e., add comma after "coefficients"
H
P309 LH col line 4 in Table 14.4: move Coefficient next to Aerodynamic i.e., Aerodynamic Coefficient

P311 LH col line 3: Asketch \longrightarrow A sketch i.e., add space after "A"
P311 LH col line 15: $\quad, C_{l_{p}}, \longrightarrow, C_{l_{p}}$
i.e., add space before and delete space after $C_{l_{p}}$

P311 LH col line 16
of $C_{l_{p}} \longrightarrow$ of $C_{l_{p}}$
i.e., add space after "of"

P311 LH col line 18:
general, $C_{l_{p}} \longrightarrow$ general, $C_{l_{p}}$
i.e., add space after comma
in $C_{l_{p}} \longrightarrow$ in $C_{l_{p}} \quad$ i.e., add space after "in"
$, C_{M_{\alpha}}, \longrightarrow \quad, C_{M_{\alpha}}, \quad$ i.e., change spacings of commas

$$
\text { of } C_{M_{\alpha}} \longrightarrow \text { of } C_{M_{\alpha}} \quad \text { i.e., add space after "of" }
$$

P311 RH col line 5:
in $C_{M_{\alpha}} \longrightarrow$ in $C_{M_{\alpha}}$ i.e., add space after "in"

P311 RH col line 7:
$, C_{N_{\alpha}}, \longrightarrow, C_{N_{\alpha}}$, i.e., add space before and delete space after $C_{N_{\alpha}}$

P311 RH col line 10:
$C_{L_{\alpha}}+C_{D} \cdot \longrightarrow C_{L_{\alpha}}+C_{D}$.
i.e., delete space before period

P311 RH col line 13:
of $C_{N_{\alpha}} \longrightarrow$ of $C_{N_{\alpha}}$
i.e., add space after "of"

P311 RH col line 21:
P311 RH col line 26: -measured $C_{M_{p \alpha}} \longrightarrow$-measured $C_{M_{p \alpha}}$ ie, add space after " -measured "

P311 RH col line 26 :

$$
, C_{N_{p \alpha}} \longrightarrow, C_{N_{p \alpha}}
$$

i.e., add space after comma

P311 RH col line 27:
the $C_{M_{p \alpha}} \longrightarrow$ the $C_{M_{p \alpha}}$
i.e., add space after "the"

P315 LH col line 2 below eq. (14.18): \quad shift of ${ }_{C G} \longrightarrow$ shift of $\Delta_{C G}$
i.e., insert Δ before subscript $C G$

P315 LH col line 3 below eq. (14.18): that ${ }_{C G} \longrightarrow$ that $\Delta_{C G}$
i.e., insert Δ before subscript $C G$

P315 RH col line below eq. (14.21): no indent before "where"
the $\quad C G \quad$ the $\Delta_{C G}$
i.e., insert Δ before subscript $C G$

P315 RH col eq. (14.21): There should be a box around the equation, as in MS
P315 RH col eq. (14.22): There should be a box around the equation, as in MS
P315 RH col eq. (14.23): There should be a box around the equation, as in MS
P315 RH col line 4 below eq. (14.23): the ${ }_{C G} \longrightarrow$ the $\Delta_{C G} \quad$ i.e., insert Δ before subscript $C G$
P315 RH col line 6 below eq. (14.23): , $C G \longrightarrow, \Delta_{C G} \longrightarrow$ i.e., insert Δ before subscript $C G$
P315 RH col line 7 below eq. (14.23): $, C G \longrightarrow, \Delta_{C G} \longrightarrow$ i.e., insert Δ before subscript $C G$
P315 RH col line 8 below eq. (14.23): so $C_{G} \longrightarrow$ so $\Delta_{C G} \quad$ i.e., insert Δ before subscript $C G$

P316 LH col last line: change to read
H P316 RH col:
"Figure 14.15 Pitch Damping Coefficients vs Mach Number" insert in Figure 14.15(a) below the curve
$\odot\left\lfloor C_{M_{q}}+C_{M_{\dot{\alpha}}}\right\rfloor$ vs Mach Number
H P316 RH col:
replace in Figure 14.15(b)
$\odot\left\lfloor C_{M_{q}}+C_{M_{\dot{\alpha}}}\right\rfloor$ vs Center of Gravity
with
P316 RH col:
$\odot\left\lfloor C_{N_{q}}+C_{N_{\dot{\alpha}}}\right\rfloor$ vs Mach Number insert in Figure 14.15 at the very bottom
"Figure 14.15(b). Pitch Damping Force Coefficient vs Mach Number"

P319 RH col last line of Table 14.5: $\quad C_{M_{\alpha}} \longrightarrow C_{M_{\dot{\alpha}}} \quad$ i.e., add dot above α

P327 RH col ref 17 3rd line: This should be moved up after "Report", i.e., Report \longrightarrow Report No. 1048, 1958 No. 1048, 1958

There is NO index!!!

Chapter 9 references are appended below.

REFERENCES - CHAPTER 9

1. Fowler, R. H., E. G. Gallop, C. N. H. Lock and H. W. Richmond, "The Aerodynamics of a Spinning Shell," Philosophical Transactions of the Royal Society of London, Series A, Volume 221, 1920.
2. Kent, R. H., "Notes on a Theory of Spinning Shell," Ballistic Research Laboratories Report No. 898, 1954.
3. Nielsen, K. L., and J. L. Synge, "On the Motion of a Spinning Shell," Ballistic Research Laboratories Report No. X116, 1943.
4. Kelley, J. L., and E. J. McShane, "On the Motion of a Projectile With Small or Slowly Changing Yaw," Ballistic Research Laboratories Report No. 446, 1944.
5. Lieske, R. F., and R. L. McCoy, "Equations of Motion of a Rigid Projectile," Ballistic Research Laboratories Report No. 1244, 1964.
6. DeGrafft, W. E., "An IBM 7090 Six-Degree-of-Freedom Trajectory Program, Naval Ordnance Laboratory Technical Report No. 64-225, White Oak, Maryland, 1965.
7. Friedman, E. M., "PANOL Six-Degrees-of-Freedom System Analysis and Usage," U.S. Army Armament Research and Development Command Technical Report ARLCD-TR-77025, 1977.
8. Synge, J., and B. Griffith, Principles of Mechanics, McGraw-Hill, New York, NY, 1959.
9. Carnahan, B., H. A. Luther, and J. O. Wilkes, Applied Numerical Methods, John Wiley \& Sons, New York, NY, 1969.
10. Gill, S., "A Process for the Step-by-Step Integration of Differential Equations in an Automatic Computing Machine," Proceedings of the Cambridge Philosophical Society, No. 46, 1951.
11. McCoy, R. L., "The Aerodynamic Characteristics of 7.62 mm Match Bullets," Ballistic Research Laboratory Memorandum Report No. BRL-MR-3733, 1988.
12. Roecker, E. T., "The Aerodynamic Properties of the 105 mm HE Shell, M1, in Subsonic and Transonic Flight," Ballistic Research Laboratories Memorandum Report No. 929, 1955.
13. McCoy, R. L., "The Subsonic Aerodynamic Characteristics of the 105 mm HE Shell, M1, at Angles of Attack From Zero to 180 Degrees," Ballistic Research Laboratories Memorandum Report No. 2353, 1974.
14. Murphy, C. H., "Free Flight Motion of Symmetric Missiles," Ballistic Research Laboratories Report No. 1216, 1963.
15. Brown, T. G., Jr., and R. L. McCoy, "Free-Flight Aerodynamic Characteristics of Three 120 mm Mortar Projectiles: XM934-HE, XM930-Illuminating, XM929-Smoke," Ballistic Research Laboratory Memorandum Report No. BRL-MR3884, 1991.
16. Lieske, R. F., and M. L. Reiter, "Equations of Motion for a Modified Point Mass Trajectory," Ballistic Research Laboratories Report No. 1314, 1966.
17. Bradley, J. W., "An Alternative Form of the Modified Point-Mass Equation of Motion," Ballistic Research Laboratory Memorandum Report No. BRL-MR-3875, 1990.
