Typographical Errors in Robert L. McCoy, "Modern Exterior Ballistics" Schiffer Publishing Ltd, Atglen, PA, 1999

Corrections by Donald G. Miller, LLNL, based on comparisons with the Final Manuscript. With additions and corrections by Henry Hudgins, Picatinny (denoted by H).
by Gene Cooper and Peter Plostins, ARL.
by Robert Lieske and Henry Hudgins (denoted by L).
by Gene Cooper, ARL (denoted by C).
by Darrel Barnette, U. of Texas (denoted by B).
by James B. Millard, "On-line Ballistics" (denoted by M).

Note: Many of the corrections below are "cosmetic", such as revised spacings between symbols or commas, and are designed to make the text easier to read. These were included in the as yet unrealized hope that the publisher would reprint the text or at least include these corrections in an errata sheet. However, most of the errors corrected below are serious, and include incorrect equations and symbols, missing but essential equations and symbols, wrong table headings, incorrect spellings, the botching of the MCTRAJ Basic listing, completely wrong references for Chapter 9, and the missing index. Only a few of these errors are typos in Bob's final manuscript.

Bob McCoy passed away just after he submitted that final manuscript, and could not oversee the final result. No corrections could have been made before printing because galley or page proofs were never sent to any of his representatives.

The symbol \longrightarrow means "is corrected to read". Ic and uc mean lower case and upper case, respectively.

Chapter $2 \quad$ PP32-41
P33 LH col $3^{\text {rd }}$ line above eq. (2.3): angle is,\longrightarrow angle is α_{t}, \quad i.e., insert " α_{t} " between "is" and comma
L P33 RH col $12^{\text {th }}$ line above § 2.3: $\quad \sin \alpha_{t}=\sqrt{\left(\frac{\sin \alpha}{\cos \beta}\right)^{2}+\sin ^{2} \beta} \longrightarrow \sin \alpha_{t}=\sqrt{(\sin \alpha \cos \beta)^{2}+\sin ^{2} \beta}$
RH col $5^{\text {th }}$ line above § 2.3:
$, \alpha_{t} \longrightarrow, \alpha_{t}$
i.e., fraction is wrong (wrong in MS)

P3
RH col eq. (2.6-a): Vecto $\longrightarrow \quad$ Vector

P35	LH col eq. (2.8): Avial \longrightarrow Axial
P35	RH col eq. (2.12) and (2.13): change the fonts of these equations to be consistent with all the others
i.e., delete comma before subscript t and insert space between " 1 " and "and"	
P36	LH col 2nd definition under eq. (2:16): $C_{N_{\alpha 02}} \longrightarrow C_{N_{\alpha_{2}}} \quad$ i.e., delete subscript 0 and lower the 2
P36	RH col 1st line of 3 ${ }^{\text {rd }}$ par.: \quad positive $C_{M_{\alpha}} \longrightarrow$ positive $C_{M_{\alpha}} \quad$ i.e., insert space before $C_{M_{\alpha}}$
P37	RH col 2nd line of par. below eq. (2.24): moment on is \longrightarrow moment on $\sin \alpha_{t}$ is i.e., insert $" \sin \alpha_{t}$ "
P38	LH col line below eq. (2.26): reduce the large space between "where" and "CP ${ }_{F}{ }^{\prime \prime}$
P38	RH col 3rd line from bottom: insert q_{t} and $\dot{\alpha}_{t}$ as below proportional to and one proportional to.\longrightarrow proportional to q_{t} and one proportional to $\dot{\alpha}_{t}$.
P40	LH col Table 2.1:
	All symbols on the left hand side of the equations should have a circumflex ${ }^{\wedge}$ overscript, not a \cap overscript. Equations 4-9 should have subscripts α (alpha), not a (lower case A)
P40	LH col 2nd line under § 2.14: (etc. $) \longrightarrow\left(K_{D}, K_{L}, K_{M}\right.$, etc. $)$
P40	RH col Table 2.2:
Moment Coefficient equations ($C_{l_{p}}, C_{N_{p \alpha}}, C_{M_{p \alpha}}$) should all have minus signs, i.e.,	
	$-\frac{8}{\pi} K_{A},-\frac{8}{\pi} K_{F},-\frac{8}{\pi} K_{T}$, respectively.

P4
P41 RH col Ref. 9:

Row 3, 4, 5, 6, 9, 10 of columns 2 and 3 are not lined up with column 1
Configuratsl \longrightarrow Configurational (wrong in the manuscript)

Chapter 3 PP42-51

H P43 RH col eq. (3.12): $\quad \mathrm{X}=\longrightarrow \mathrm{Y}=$

P44 LH col eq. (3.14):
P44 LH col under eq. (3.16):
P44 LH col under eq. (3.17):
P44 LH col 2nd line from bottom:
P44 RH col 2nd line above eq. (3.18):
P44 RH col 2nd line above eq. (3.20):
insert space between LH vertical line of box and "Y" close up large space between "where" and "R = range..." no indent before "where" no indent before "and for..." to $\phi_{0} \longrightarrow$ to $\phi_{0} \quad$ i.e., add space after "to" denoted by $\phi_{0} \longrightarrow$ denoted by $\hat{\phi}_{0} \quad$ i.e., add space after "by" and a " \wedge " to " $\phi_{0} "$

P45 LH col 2nd line above eq. (3.21): The beginning of this line should read: velocity, V_{y}, is zero. i.e., $\quad V_{y 0}$ is wrong and falls on top of the word "zero". " V_{y} " should go between the commas.

P45 LH col line below eq. (3.21): where Y_{S} is $\longrightarrow \quad$ where Y_{S} is i.e., a space after "where"

P46 RH col: eq. (3.31) - (3.33) should have " \approx " instead of " $=$ ".

P47 RH col 2nd par. line1 the $\tilde{X} \longrightarrow$ the \tilde{X}
i.e., a space before \tilde{X}

2nd par. line2: " \tilde{Y} " missing at beginning of the line
2nd par. line2: the \tilde{X}-axis \longrightarrow the \tilde{X}-axis i.e., add space before \tilde{X}, delete after

2nd par. line3: close up space between " $\tilde{Y}^{\prime \prime}$ and "- axis"
2nd par. line4: \quad close up space between " $\tilde{X}^{\prime \prime}$ and "- axis"

P48	LH col line below eq. (3.45):	"Equation" should not be indented and should not be capitalized.
P48	RH col line 2: angles,	\ldots angles, R_{S} / R can be i.e., insert " R_{S} / R ", after "angles,"
P48	RH col line 4:	of $\phi_{0} \longrightarrow$ of $\phi_{0} \quad$ i.e., insert space after "of"
P48	RH col line 5:	insert space after "setting"
H P48	RH col line 6:	for $\phi_{0} \longrightarrow$ for $\phi_{0} \quad$ i.e., insert space after "for"
P48	RH col line below eq. (3.48):	close up space before and after " $\phi_{0_{c r}}{ }^{\prime \prime}$
$\begin{aligned} & \text { P48 } \\ & \text { P48 } \end{aligned}$	RH col line above table 3.1: RH col eq. (3.49):	
P50	RH col line 3:	angles, $\phi_{0_{c r}}$ and \longrightarrow angles, $\phi_{0_{c r}}$ and i.e., insert a space after comma and one before "and"
P50	RH col line 10 [(b)]:	If, $\phi_{0}=\phi_{0_{c r}} \ldots \longrightarrow$ If $\phi_{0}=\phi_{0_{c r}} \ldots$ i.e., replace comma after "If" with a space
P50	RH col line 13 [(c)]:	$v 1 \longrightarrow v \approx 1$ i.e., insert " \approx "

Chapter $4 \quad$ PP52-87

P55 LH col lines 2,3 below Table 4.1: these are a single sentence, so should be joined without space or indent.
i.e., to disappear in U.S. Army Ordnance"

P55 LH col 1st paragraph of § 4.3 line 3: $\quad, \longrightarrow, C_{D}$, i.e., insert " C_{D} " between the ,
P55 LH col line 6 from bottom: number, $\rho V l S / \mu$, number, $\rho V l / \mu$, i.e., Equation wrong and

P55 LH col line 5 from bottom: \quad where $\mu \longrightarrow$ where μ
P55 RH col line 2 below Table 4.1:

P70 RH col line 3 below Fig 4.21:
P70 RH col line 4 below Fig 4.21:
P70 RH col line 6 below Fig 4.21:
H P70 RH col line 8 below Fig. 4.21:

RH col line 14 below Fig. 4.21:
Figure is Figure 4.12 i.e., change 4.11 to 4.12

P78 LH col line 6: delete space between "value" and comma
nose, $R=R_{T}, \longrightarrow$ nose, $R=R_{T}, \quad$ i.e, insert space after comma
parameter $R_{T} / R \longrightarrow$ parameter $R_{T} / R \quad$ i.e, put space before R_{T} / R
space between "thus" and " $R_{T} / R=0 "$
comma and space between "therefore" and " $0<R_{T} / R<1$ "
and between " 1 " and "for",
i.e., it should read: therefore, $0<R_{T} / R<1$ for
put comma and space after "i.e." to read: (i.e., $R_{T}=0.5$)

P78 LH col 3rd paragraph line 4, in parenthesis:

$\left(\log _{10} \operatorname{Re} 5.0\right) \longrightarrow\left(\log _{10} R e \approx 5.0\right)$	i.e., insert $" \approx "$ between $R e$ and 5.0 However,\longrightarrow However, i.e., delete space before comma

P78 LH col 1st par. of § 4.9 line 5: space between comma and " $C_{D_{0}}$ "
P78
line 6: \quad space between comma and " $C_{D_{\delta^{2}}} "$
P78
RH col line 4:
space between "and" and " $C_{D_{\delta^{2}}}$ "

P80 LH col line 17:
P80 LH col line 20:
P80 LH col line 4 above § 4.10:

P81 bottom of page:
P83 bottom of page:

P86 Ref. 1. line 2:
space between "of" and " $C_{D_{\delta^{2}}}$ "
space between "to" and " $C_{D_{0}}$ "
space between "of" and " $C_{D_{0}}$ "
space between "for" and " $C_{D_{0}}$ "
space between "of" and " $C_{D_{0}}$ "

Figure is Figure 4.42
i.e., change 4.41 to 4.42

Figure is Figure 4.45
$1893 \longrightarrow 1900$ (wrong in MS)

Chapter $5 \quad$ PP88-97

P89 RH col line 8:
P89 RH col line 4 from bottom:
for in $\ldots \longrightarrow$ for $\sum \vec{F}$ in $\ldots \quad$ i.e., insert $\sum \vec{F}$ after "for"
vector, $\vec{g} \longrightarrow$ vector, $\vec{g} \quad$ i.e., insert space before " \vec{g} "

P90 LH col line 1 above eq. (5.11): product of with... \longrightarrow product of \vec{V} with...

$$
\text { i.e., insert " } \vec{V} \text { " between "of" and "with" }
$$

RH col line 3 of § 5.3:
insert " V_{y} " before and " V_{z} " after "and", and insert " V_{x} " after
"component" and before the comma.
Line 3 should read: velocity components V_{y} and V_{z} are much smaller than the component V_{x} for
RH col line 4 of $\S 5.3$:

P91 LH col eq. (5.21):
P91 LH col eq. (5.24):
eq. (5.25):
crosswind, may \longrightarrow crosswind, V_{z} may
i.e., insert " V_{z} " before "may"

RH col 3rd line above eq. (5.16):
delete the " 1 " after the "+ \ldots " and which is in front of the "]"
insert space between "approximation" and " $V \approx V_{x}$ "
i.e., to read: "approximation $V \approx V_{x}$ "
$V_{x}^{\prime}=\hat{C}_{D}^{*} V_{x} x \longrightarrow V_{x}^{\prime}=\hat{C}_{D}^{*} V_{x} \quad$ i.e., delete "x" after " V_{x} "

LH col 4th line from bottom:
RH col eq. (5.29):
P91
RH col eq. (5.31):
P91
RH col eq. (5.32):
middle integral sign \int should be larger left hand integral sign \int should be larger eq. (5.26), in denominator before large $\left[: V_{x_{0}^{2}} \longrightarrow V_{x_{0}}^{2}\right.$ (wrong in MS), both integral signs larger eq. (5.27): left hand integral sign \int should be larger S_{1}, S_{2}, and $S_{3} \quad \longrightarrow \quad s_{1}, s_{2}$, and $s_{3} \quad$ i.e., change S to lc left hand integral sign \int should be larger left hand integral sign \int should be larger left hand integral sign \int should be larger

LH col eq. (5.33):
left hand integral sign \int should be larger
P92 LH col eq. (5.33): the upper limit of the $2 \mathrm{nd}(\mathrm{RH})$ integral must be t, not an arbitrary dummy variable s_{2}
LH col eq. (5.39), 2nd term in []: $\quad-\frac{1}{V_{x_{0}} k_{1} t} \longrightarrow+\frac{1}{V_{x_{0}} k_{1} t} \quad$ i.e., - to +
LH col eq. (5.39):
$1 n \longrightarrow \ln$ i.e., the numeral 1 should be a lc italic L LH col eq. (5.39), in the denominator: $\left(1+V_{x_{0}} k_{1} t\right)^{2} \longrightarrow\left(V_{x_{0}} k_{1} t\right)^{2}$
RH col eq. (5.43):
RH col eq. (5.44):
$1 n \longrightarrow \ln \quad$ i.e., the numeral 1 should be a lc italic L
$\left(1-\frac{V_{x_{0}}}{V_{x}}\right) \longrightarrow\left(1+\frac{V_{x_{0}}}{V_{x}}\right)$
(wrong in MS)
RH col eq. (5.45), last term:
RH col line 5 of Example 5.1:
$1 n \longrightarrow \ln$
i.e., the numeral 1 should be a lc italic L

RH col eq. (5.47):
P93 LH col line 3 of Example 5.
P93 LH col line 8 of Example 5.2
0.452." $\longrightarrow 0.452$," i.e., replace the period after 0.452 by a comma $1 n \longrightarrow \ln \quad$ i.e., the numeral 1 should be a lc italic L

P93 RH col line under eq. (5.56):
P93 RH col eq. (5.57):
P93 RH col eq. (5.58):

H

P93 RH col eq. (5.59):

H P94 LH col eq. (5.63)
P94 RH col eq. (5.67):
P95 RH col Table 5.4:

Table 5.5:
Table 5.6:

H P97
Tables 5.7, 5.8, 5.9 last col:
and $Y_{0} \longrightarrow$ and $Y_{0} \quad$ i.e., insert space after "and"
and $V_{x} \longrightarrow$ and $V_{x} \quad$ i.e., insert space after "and" no indent before "where"
$1 n \longrightarrow \ln \quad$ i.e., the numeral 1 should be a lc italic L
$1 n \longrightarrow \ln \quad$ i.e., the numeral 1 should be a lc italic L
$\ln \left(1-V_{x_{0}} / V_{x}\right) \longrightarrow \ln \left(\frac{V_{x}}{V_{x_{0}}}\right) \quad$ i.e., the quantity in () is different
$1 n \longrightarrow \ln \quad$ i.e., the numeral 1 should be a lc italic L (2 places)
$k_{3} / \sqrt{M} \longrightarrow k_{3} / \sqrt{V_{x}}$
$V_{x}^{\prime}=\longrightarrow V_{x}=\quad$ i.e., delete the "prime"
$1 n \longrightarrow \ln \quad$ i.e., the numeral 1 should be a lc italic L (2 places $)$
$1 n \longrightarrow l n \quad$ i.e., the numeral 1 should be a lc italic L (1 place)
$1 n \longrightarrow \ln \quad$ i.e., the numeral 1 should be a lc italic L (3 places)
$K_{3} / M \longrightarrow K_{3} / \sqrt{M} \quad$ i.e., replace M by $\sqrt{ } M$

Chapter $6 \quad$ PP98-156

P98 LH col 2nd paragraph, line 2:
P98 RH col eq. (6.1), 2 nd eq:
M P98 RH col eq. (5.8):

M P98 RH col eq. (5.9):

P98
RH col eq. (6.3):
(Ref. 2b) \longrightarrow (Ref. 2a, Ref. 2b)
(wrong in MS)
$V_{x} \approx V \cos \phi \quad \longrightarrow \quad V_{x} \approx V \cos \phi_{0} \quad$ i.e., replace ϕ by ϕ_{0}
insert $=\operatorname{after} \frac{d V_{x}}{d t}$
i.e., $\quad \dot{V}_{x}=\frac{d V_{x}}{d t}=-\hat{C}_{D}^{*} V V_{x}$
insert $=\operatorname{after} \frac{d V_{y}}{d t} \quad$ i.e., $\quad \dot{V}_{y}=\frac{d V_{y}}{d t}=-\hat{C}_{D}^{*} V V_{y}-g$
$v \longrightarrow V$
i.e., $\frac{d v}{d t} \longrightarrow \frac{d V}{d t}$

P113 Table 6.11. Some of the headings are misplaced to the right. The headings should read:

Reference	Projectile	Nominal	Velocity	Form	Ballistic	Drag
Diameter		Weight	Interval	Factor	Coefficient	Function
(Inches)		(Grains)	(fps)	i	C (lb/in $\left.{ }^{2}\right)$	

PP114-156 In the Tables of the Primary Siacci Functions, the order of the entries is velocity V, space function $S(V)$, altitude function $A(V)$, trajectory inclination function $I(V)$, and time of flight function $T(V)$. For the G_{1} Drag Function (PP 119-124), G_{6} Drag Function (PP 135-140), G_{7} Drag Function (PP 140-145), and $G_{S P}$ Drag Function (PP 151-156), the $\mathrm{I}(\mathrm{V})$ headings are mislabeled as $\mathrm{T}(\mathrm{V})$, leaving two columns labeled $\mathrm{T}(\mathrm{V})$.

```
P156 LH col Ref. 1a 1 1 line:
1_ \longrightarrow 1
i.e., a " ○" instead of "_"
P156 LH col Ref. 3: "1953" in line 3 should be moved up behind "Press," in line 2
    i.e., "Denver Press, 1953 "
```


Chapter $7 \quad$ PP157-164

Everywhere in this Chapter:
replace all uc subscripts X, Y, Z by lc subscripts x, y, z, respectively; most or all are listed below. These are inconsistent in the MS

P157 LH col lines 3-5 2nd par. of § 7.1: uc subscripts X, Y, Z \longrightarrow lc subscripts x, y, z, respectively
P157 LH col line 2 under § 7.2: insert space between comma and " V " i.e., "velocity \vec{V}, in"

P158 LH col line 1:
P158 LH col eq. (7.3): $\quad V_{Z} \longrightarrow V_{z} \quad$ i.e., subscript z should be lc
P158 LH col at eq. (7.11):
no indent before "where"

P158 RH col eq. (7.14), middle inequality: $\quad V_{X} \longrightarrow V_{x} \quad$ i.e., subscript x should be lc

P162 LH col lines 2,3 below eq. (7.35): uc subscript X replaced by lc subscript x in two places: W_{x}, V_{x}, respectively
P162 LH col eq. (7.38):

P162 RH col eq. (7.40):
the 2 instances of $-\int_{0}^{X} \hat{C}_{D}^{*} d s_{1}$ should be the same (larger) size
the 3 instances of $-\int_{0}^{X} \hat{C}_{D}^{*} d s_{1}$, should be the same (larger) size
H \quad RH col eq. (7.40):
there should be a ds_{2} just ahead of the last ")" (missing from MS)
P162 RH col eq. (7.43):
P162 RH col eq. (7.45):

$$
\begin{array}{cll}
\mathrm{V}_{\mathrm{x}}\left[\mathrm{~V}_{\mathrm{x}}\right] \quad \mathrm{V}_{\mathrm{x}}^{2} & \longrightarrow \mathrm{~V}_{\mathrm{x}}\left[\mathrm{~V}_{\mathrm{x}}\right] \approx \mathrm{V}_{\mathrm{x}}^{2} & " \approx " \text { missing between } " \mathrm{~V}_{\mathrm{x}}\left[\mathrm{~V}_{\mathrm{x}}\right] \text { " and } " \mathrm{~V}_{\mathrm{x}}{ }^{2 "} \\
{\left[\mathrm{~V}_{\mathrm{y}}\right] \mathrm{V}_{\mathrm{y}}} & \longrightarrow & {\left[\mathrm{~V}_{\mathrm{y}}\right] \approx \mathrm{V}_{\mathrm{y}}}
\end{array}
$$

P163 LH col line below eq. (7.53): $\mathrm{V}_{\mathrm{Y}} \longrightarrow \quad \mathrm{V}_{\mathrm{y}} \quad$ i.e., subscript y should be lc
P164 Tables 7.4 and 7.5 headings: $V_{X} \longrightarrow V_{x} \quad$ i.e., subscripts x and y are lower case $\mathrm{V}_{\mathrm{Y}} \longrightarrow \mathrm{V}_{\mathrm{y}} \longrightarrow \quad$ for consistency with Table 7.3

Chapter $8 \quad$ PP165-186

P166 LH col line under eq. (8.9):

P167 RH col eq. (8.24):
delete the "-78"
i.e., eq. (8.24) should read

$$
\begin{equation*}
f_{\rho\left(R_{H}\right)}=1-.00378 R_{H}\left(\frac{P_{W V}}{29.92}\right) \tag{8.24}
\end{equation*}
$$

H P168 LH col 2 line 2 below Table 8.1: P168 LH col eq. (8.26):

H P168 2nd col of Table 8.2:
H

P176
LH col line 13 below Table 8.4:
vapor pressure at the local \longrightarrow vapor pressure at saturation at the local delete the " -78 "
i.e., eq. (8.26) should read

$$
\begin{equation*}
f_{a_{0}\left(R_{H}\right)}=1+.0014 R_{H}\left(\frac{P_{W V}}{29.92}\right) \tag{8.26}
\end{equation*}
$$

Water Vapor Pressure \longrightarrow Water Vapor Pressure At Saturation (In., Hg) \longrightarrow (In, Hg)
above: \longrightarrow above.
(MS not consistent with layout of book)

P176 RH col line 4 below Table 8.4: $\beta, \longrightarrow \beta \quad$ i.e., delete comma after β
P178 LH col line 1: at the beginning of the line, delete space between " $\beta=\sqrt{\sec \phi_{0}} "$ and the comma
P178 RH col eq. (8.29): $\quad-V_{x} \longrightarrow V_{x}$
H P178 RH col line 5 from bottom: $\quad V_{X}$ and $V_{Z} \longrightarrow V_{x}$ and $V_{z} \quad$ i.e., subscripts x and z are lc
P179 LH col eq. (8.33):
$\dot{V}_{x} \longrightarrow V_{x}$
P179 RH col eq. (8.40):
$\sqrt{Y_{s}^{3} g} \longrightarrow \sqrt{Y_{s}^{3} / g} \quad$ i.e., insert /
P179 LH col eq. (8.45):
lc subscripts x to uc subscripts X and lc "oh" to "zero" i.e.,

$$
V_{\mathrm{x}}=V_{\mathrm{x} 0} \longrightarrow V_{\mathrm{X}}=V_{\mathrm{x} 0}
$$

P180 LH col eq. (8.53): lc subscripts x to uc subscripts X and lc "oh" to "zero" i.e.,
P180 LH col line below eq. (8.53): insert " \geq " between "cos L " and " 0 " i.e., $\cos L \geq 0$

P180 RH col Table 8.8, headings of col 3 and col 4: VXO $\longrightarrow \mathrm{V}_{\mathrm{x} 0}$
P181 RH col line 5 above Figure 8.16: $C D \longrightarrow C_{D}$

P182 Table 8.11, col 4
P182 Table 8.11, col 5

P183 LH col line 3:
P183 LH col line 3:
P183 LH col paragraph 3 line 2:
P183 LH col paragraph 3 line 2:
insert " Δ " before "-Range"
insert " Δ " before "-Deflection"
insert " Δ " in front of " 's "
delete space between "dif" and "ferences"
insert " Δ " before "-Range"
insert " Δ " before "-Deflection"
i.e., $\quad \Delta$-Range
i.e., $\quad \Delta$-Deflection
i.e., $\quad \Delta$'s
i.e., differences
i.e., $\quad \Delta$-Range
i.e., Δ-Deflection

Errors in MCTRAJ Computer Program

P183 line numbers:

10	MCTRAI.BAS	\longrightarrow	MCTRAJ.BAS
90	COErilCIENT	\longrightarrow	COEFFICIENT
110	LBON 2	\longrightarrow	LB/IN 2
130	MINtEIES	\longrightarrow	MINUTES
150	1so	\rightarrow	150
180	FIR]NG	\longrightarrow	FIRING
190	OmON	\longrightarrow	OPTION
340	(LINE 2)		
	(V^{\wedge}-FTIsEc)	\longrightarrow	(VZ--FT/SEC)

P184

520	COE "ICIENT	\longrightarrow COEFFICIENT
530	[RETURN 1	\longrightarrow [RETURN]
580	VVHICH	\longrightarrow WHICH
680	M (J'ABS(M (J))	$\longrightarrow \mathrm{M}(\mathrm{J})=\mathrm{ABS}(\mathrm{M}(\mathrm{J}))$
1040	DINT=1\#	\longrightarrow DINT = 1\#
1100	TK1C	\longrightarrow TK1=
1130	W1	$\longrightarrow \mathrm{VV} 1$
1200	W1	$\longrightarrow \mathrm{VV} 1$

1290	(LBON 2)	\longrightarrow		
1520	IFN1	\longrightarrow	IF N/IN 2)	i.e.,
1660	lillS	\longrightarrow	THIS	
1720	TRA-TECTORY	\longrightarrow	TRAJECTORY	
1760	INITIALT7:F.	\longrightarrow	INITIALIZE	

P185

P185

3040	3040 IFL $=$	\longrightarrow	3040 IF L=
3080	$\mathrm{~T}(\mathrm{~N}=$	\longrightarrow	$\mathrm{T}(\mathrm{N})=$
3100	$\mathrm{~W}(\mathrm{~N}=$	\longrightarrow	$\mathrm{W}(\mathrm{N})=$
3140	all commas \longrightarrow	semicolons	
3280	IF $\mathrm{P}=2=$	\longrightarrow	IF $\mathrm{J} \geq 2$

P186

3340	$(\mathrm{H} 3-\mathrm{H}(\mathrm{O} *(\mathrm{E}(\mathrm{J}-1)-(\mathrm{J}) /$	\longrightarrow
3360	WIIH	\longrightarrow
3590	3590NEXTI	$\longrightarrow \mathrm{HITH}(\mathrm{J})) *(\mathrm{E}(\mathrm{J}-1)-\mathrm{E}(\mathrm{J})) /$
3680	LB1N2	\longrightarrow

(wrong in MS)
i.e., lower case L to numeral one

Chapter $9 \quad$ PP187-220

P187 LH col line 9 under § 9.1: "(Ref. 2)" shouldn't be indented but follow after "Kent" on line 8 i.e., "Kent (Ref. 2) at"

P188 RH col line 12:
P188 RH col line 4 above eq. (9.3):
P188 RH col 2nd line above eq. (9.3): "momentum" and "is" i.e., "The total projectile vector angular momentum \vec{H} is therefore...." (not in MS, but in the next-to-last draft)

P189 LH col line 2: $\quad \frac{d \vec{x}}{d t} "$ in line 2 extends into line 3. It should be written $" d \vec{x} / d t$ " to avoid this.
P189 RH col line 15: $\quad \mathrm{d}^{2} / 4 \longrightarrow \pi \mathrm{~d}^{2} / 4 \quad$ i.e., insert π, move superscript next to d
P189 RH col 8th line from bottom: $C_{M_{\dot{\alpha}}} \longrightarrow C_{N_{\dot{\alpha}}} \quad$ i.e., change M to N to get $\left(C_{N_{q}}+C_{N_{\dot{\alpha}}}\right)$

P190 RH col line 2 under eq. (9.15): $\quad v_{2}=\longrightarrow v^{2}=\quad$ i.e., change subscript to superscript
M P190 RH col 5th eq. below eq. (9.15): $\quad p=\frac{I_{x}}{I_{y}}(\vec{h} \bullet \vec{x}) \longrightarrow \quad p=\frac{I_{y}}{I_{x}}(\vec{h} \bullet \vec{x}) \quad$ i.e., switch subscripts x, y
P191 LH col Table 9.1 (heading of RH col): $\left[E_{2}-X_{2}\right] \longrightarrow\left[E_{2}-X_{2}\right]$ (Inches) i.e. units missing
P192 LH col 1st paragraph line 1: vector, $\vec{x} \quad \longrightarrow \quad$ i.e., change spacings by commas
P192 LH col 1st paragraph line 2: \vec{y} and $\vec{z} \longrightarrow \vec{y}$ and $\vec{z} \quad$ i.e., put space before and after "and"
P192 LH col 1st paragraph line 6: $(\vec{z} \times \vec{x}) . \longrightarrow(\vec{z} \times \vec{x}) . \quad$ i.e., delete space before period
P192 LH col eq. (9.23), right side of equation, center expression: $\sin \left(\theta_{0}+\alpha_{0}\right) \longrightarrow \sin \left(\phi_{0}+\alpha_{0}\right)$
C P192 LH col rhs of eq. (9.24), center expression: replace $\cos \left(\phi_{0}+\alpha_{0}\right)$ by $\cos ^{2}\left(\phi_{0}+\alpha_{0}\right) \quad$ (wrong in MS)

$$
\text { i.e., } \quad \cos ^{2}\left(\theta_{0}+\beta_{0}\right) \cos \left(\phi_{0}+\alpha_{0}\right)+\sin ^{2}\left(\theta_{0}+\beta_{0}\right) \quad \longrightarrow \cos ^{2}\left(\theta_{0}+\beta_{0}\right) \cos ^{2}\left(\phi_{0}+\alpha_{0}\right)+\sin ^{2}\left(\theta_{0}+\beta_{0}\right)
$$

P192 LH col eq. (9.26): there should be a box around equation, as in MS
C P192 LH col line above eq. (9.27): replace that line by the following clarifying material:
The vector $d \overrightarrow{\mathbf{x}}_{\mathbf{0}} / d t$ is given by:

$$
\begin{equation*}
d \overrightarrow{\mathbf{x}}_{0} / d t=\vec{\omega}_{0} \times \overrightarrow{\mathbf{x}}_{0}=\left(\vec{\omega}_{0} \bullet \overrightarrow{\mathbf{z}}_{0}\right) \overrightarrow{\mathbf{y}}_{0}-\left(\vec{\omega}_{0} \bullet \overrightarrow{\mathbf{y}}_{0}\right) \overrightarrow{\mathbf{z}}_{0} \tag{9.27a}
\end{equation*}
$$

where the components of the column vector $\vec{\omega}_{\mathbf{0}}$ are $\left(\omega_{1_{0}}, \omega_{2_{0}}, \omega_{3_{0}}\right)$ and are in the earth-fixed system. If $\omega_{\mathbf{z}_{0}}$ and $\omega_{\mathbf{y}_{0}}$ are defined by

$$
\begin{equation*}
\omega_{\mathrm{z}_{0}}=\vec{\omega}_{\mathbf{0}} \bullet \overrightarrow{\mathbf{z}}_{\mathbf{0}} \quad \text { and } \quad \omega_{y_{0}}=\vec{\omega}_{\mathbf{0}} \bullet \overrightarrow{\mathbf{y}}_{\mathbf{0}} \tag{9.27b}
\end{equation*}
$$

then $d \overrightarrow{\mathbf{x}}_{\mathbf{0}} / d t$ is given by:
P192 RH col eq. (9.31), right hand side, center expression: $\quad+x_{1_{0}} \dot{x}_{3_{0}} \longrightarrow-x_{1_{0}} \dot{x}_{3_{0}} \quad$ i.e., + to -

P192 RH col eq. (9.31), right hand side, bottom expression: $\quad+x_{2_{0}} \dot{x}_{1_{0}} \longrightarrow-x_{2_{0}} \dot{x}_{1_{0}} \quad$ i.e., + to P192 RH col line 3 above eq. (9.32): " $\frac{d \vec{x}}{d t} "$ extends into the line below. Better written as " $d \vec{x} / d t$ "

P193 RH col line 2: $f(x, y) \longrightarrow f(x, y) \quad$ i.e., delete space between " f " and "("

P194 LH col line 3 below eq. (9.37): value, $\vec{x}_{0}, \longrightarrow$ value, \vec{x}_{0}, \quad i.e., change spacings by commas
P194 LH col line 3 above Fig 9.2: product, $\vec{x} \bullet \vec{x} \longrightarrow$ product, $\vec{x} \bullet \vec{x} \quad$ i.e., insert space after comma

P196 LH col line 2 below Fig 9.5: yaw rate, \longrightarrow yaw rate, $\omega_{y_{0}}$, i.e., insert $\omega_{y_{0}}$ between commas
P196 LH col line 14 below fig 9.5: angle, α, \longrightarrow angle, α, \quad i.e., change spacings by commas

P200 LH col line 6 (below Table 9.4): of $C_{M_{\alpha}} \longrightarrow$ of $C_{M_{\alpha}} \quad$ i.e., insert space after "of"

P201 RH col line 8: attack, $\alpha_{t}, \longrightarrow$ attack, α_{t}, \quad i.e., change spacings by commas
P201 RH col line 10:
P201 RH col line 6 above Fig 9.11:
where $\alpha \longrightarrow$ where α (insert space and use smaller font for α)
attack, \longrightarrow attack, α_{t},
i.e., insert α_{t}

P202 LH col line 5:
attack, $\alpha_{t}, \longrightarrow$ attack, α_{t}, \quad i.e., change spacings by commas
H P202 LH col line 4 from bottom: put parens around (α_{R}) and delete 1 space between it and "component"
This would read much better if parts of lines 5 and 4 from bottom were changed to read:
a significant vertical $\left(\alpha_{R}\right)$ "pitch of repose" component,
P202 RH col line 13:
P204 LH col line 17:
H P204 LH col 3rd paragraph line 1:
P204 LH col line 8 from bottom:
attack, \longrightarrow attack, α_{t}, \quad i.e., insert α_{t} between commas
attack, \longrightarrow attack, α_{t} i.e., insert α_{t} between commas
α_{t}, against $\longrightarrow \alpha_{t}$, against i.e., delete space before comma attack, $\alpha_{t}, \longrightarrow$ attack, α_{t}, \quad i.e., change spacings by commas

P212 RH col line below eq. (9.39): vector $\vec{x} \longrightarrow$ vector $\vec{x} \quad$ i.e., insert space after "vector"
P212 RH col line 2 below eq. (9.39):
delete spaces before "and" and before "is"

H P213 LH col line 3 below eq. (9.44): $\quad\left(d \vec{\alpha}_{R} / d t\right) \quad \longrightarrow\left(d \vec{\alpha}_{R} / d t\right), \quad$ i.e., delete space before comma
P213 LH col line 3 below eq. (9.44): $\quad \vec{\alpha}_{R} \longrightarrow \longrightarrow \vec{\alpha}_{R}$. i.e., delete space before period
H P213 RH col rhs of eq. (9.49): $\quad C_{M \alpha} \longrightarrow C_{M_{\alpha}} \quad$ i.e., α is a subscript to subscript M
P213 RH col line under eq. (9.49): no indent before "where"

P214 LH col eq. (9.57): $\quad C_{M \alpha} \longrightarrow C_{M_{\alpha}} \quad$ i.e., α is a subscript to subscript M
P214 RH col eq. (9.60): $\quad \frac{-\rho S d^{2} v}{2 I_{x}} p C_{l_{p}} \longrightarrow \frac{+\rho S d^{2} v}{2 I_{x}} p C_{l_{p}} \quad$ i.e., change - to +
P214 RH col line 3 above eq. (9.62): show that and in \longrightarrow show that $h_{L} \ll 1$ and $h_{M} \ll 1$ in

P216 LH col line 19 from bottom: $\quad\left|\vec{\alpha}_{R}\right|$,predicted $\longrightarrow\left|\vec{\alpha}_{R}\right|$, predicted i.e., delete space before comma
P216 RH col line 7 under example 9.5: repose, $\left|\vec{\alpha}_{R}\right| \longrightarrow$ repose, $\left|\vec{\alpha}_{R}\right| \quad$ i.e., insert space after comma

P217 headings just under "contour sketch": $\quad C_{l_{\alpha}} \longrightarrow C_{L_{\alpha}} \quad$ i.e., uc subscript L

$$
C_{l_{\alpha}} \quad \longrightarrow C_{L_{\alpha}} \quad \text { i.e., uc subscript } \mathrm{L}
$$

last entry (2.5) doesn't line up with others by one space

P220 2nd table under the drawing "Contour Sketch" and to left of "Notes":
last 2 entries of $\operatorname{col} 3(.9, .95)$ belong after the .85 in col 5 ;
-468 of col 4 belongs under -357 in col 6 ;
-745 of col 5 belongs under the moved -468 in col 6

P220 The references given for chapter 9 are an exact duplicate of the references for chapter 10 (on P239). The chapter 9 references are completely missing! The final draft of the Chapter 9 references is appended at the end.

H In Chapters 10 through 14, there are two inconsistent representations of C^{*} with a subscript $C_{\text {whatever }}^{*}$ and $C_{\text {whatever }}^{*}$. The latter should be used everywhere.

Chapter $10 \quad$ PP221-239

RH col eq. (10.2):

$$
m \frac{d \vec{H}}{d t} \longrightarrow \frac{d \vec{H}}{d t}
$$

i.e., no "m"

RH col 2nd line from bottom:

i.e., close up space before comma

LH col 3rd line above eq. (10.4):
to $\vec{x} \longrightarrow$ to \vec{x}
i.e., insert space after "to"

P223 LH col eq. (10.5):
minus sign missing

$$
\text { i.e., } \quad \text { Drag Force }=\frac{1}{2} \rho S C_{D} V \vec{V} \longrightarrow \text { Drag Force }=-\frac{1}{2} \rho S C_{D} V \vec{V}
$$

LH col eq. (10.7):

$$
v^{2} \longrightarrow V^{2}
$$

i.e., uc V

LH col eq. (10.10) 1st line:

$$
C_{M p \alpha} \quad \longrightarrow C_{M_{p \alpha}}
$$

2nd line: $\quad C_{M_{p a}} \longrightarrow C_{M_{p \alpha}}$
i.e., $a \longrightarrow \alpha$ (alpha)

RH col line 15: $\quad S=d^{2} / 4 \longrightarrow S=\pi d^{2} / 4 \quad$ i.e., insert π, move superscript next to d

RH col line 1:
comma after \vec{i}
i.e., comma after 2 nd term of 3

RH col 2nd line above eq. (10.22): vector with \vec{i} both \longrightarrow vector \vec{i} with both i.e., switch words

LH col line after eq. (10.31):
no indent of line beginning with "Equation"
LH col eq. (10.32):
$\frac{V}{D} \quad \longrightarrow \frac{V}{d}$
i.e., change to lc d

LH col eq. (10.37), 2nd line, 1 st term:
$I_{y}\left(\frac{d \vec{\omega}}{d t} \bullet \vec{x}\right) \longrightarrow-I_{y}\left(\frac{d \vec{\omega}}{d t} \bullet \vec{x}\right) \quad$ i.e., insert "-"
RH col eq. (10.38), 2nd line, 1st term: $\quad I_{x} p(\vec{\omega} \times \vec{x}) \quad \longrightarrow \quad+I_{x} p(\vec{\omega} \times \vec{x}) \quad$ i.e., insert " + "
RH col eq. (10.38), 3rd line, 1st term:
insert "+"

$$
\text { i.e., } \quad \frac{1}{2} \rho S d C_{M_{\alpha}} V^{2}(\vec{i} \times \vec{x}) \quad \longrightarrow \quad+\frac{1}{2} \rho S d C_{M_{\alpha}} V^{2}(\vec{i} \times \vec{x})
$$

RH col eq. (10.38), 4th line, 1st term: insert "+" and lower the subscript "q"

$$
\text { i.e., } \quad \frac{1}{2} \rho S d^{2} C_{M q} V\left(\vec{x} \times \frac{d \vec{x}}{d t}\right) \quad \longrightarrow \quad+\frac{1}{2} \rho S d^{2} C_{M_{q}} V\left(\vec{x} \times \frac{d \vec{x}}{d t}\right)
$$

RH col eq. (10.38), $4^{\text {th }}$ line, 2 nd term:

$$
C_{M \delta} \quad \longrightarrow \quad C_{M_{\dot{\alpha}}}
$$

i.e. subscript $\dot{\alpha}$

P225 RH col line below eq. (10.40): and \longrightarrow and i.e., change ital. "and" to roman "and"
RH col eq. (10.41), 1st line, 1st term: $\quad\left(\vec{x} \frac{d^{2} \vec{x}}{d t^{2}}\right) \quad \longrightarrow \quad\left(\vec{x} \times \frac{d^{2} \vec{x}}{d t^{2}}\right)$
P225 RH col eq. (10.41), 2nd line, last term:
P225 RH col eq. (10.41), 3rd line, last term: $p c_{M_{p \alpha}} \quad \longrightarrow \quad P C_{M_{p \alpha}} \quad$ i.e. uc p and c $C_{M_{\delta}}^{*} \quad \longrightarrow \quad C_{M_{\dot{\alpha}}}^{*} \quad$ i.e. subscript $\dot{\alpha}$ RH col 5th line from bottom, middle equation: $\quad C_{M_{\alpha}}^{*} \longrightarrow C_{M_{p \alpha}}^{*} \quad$ i.e. subscript $p \alpha$ RH col 4th line from bottom: $\quad C_{M_{\alpha}}^{*}=\frac{\rho S d}{2 m} C_{M_{\alpha}} \longrightarrow C_{M_{\dot{\alpha}}}^{*}=\frac{\rho S d}{2 m} C_{M_{\dot{\alpha}}} \quad$ i.e. subscripts $\dot{\alpha}$
i.e., insert dot over both subscripts α

LH col eq. (10.85): LH col eq. (10.107):

LH col line 9: \quad of $\alpha \longrightarrow$ of $\alpha \quad$ i.e., insert space after "of" RH col line 4, 3rd term of eq. (10.64): $P\left(\beta^{\prime}-a \alpha^{\prime}\right) \quad \longrightarrow \quad P\left(\beta^{\prime}-i \alpha^{\prime}\right)$
RH col eq. (10.65) 1st, 3rd terms after $=$ sign: $\quad k_{\gamma}^{-2} \longrightarrow \quad k_{y}^{-2} \quad$ i.e., change subscript γ to y

RH col eq. (10.66); $\quad+-i P G \longrightarrow \quad=-i P G \quad$ i.e., change + after ξ to $=$
RH col 2nd eq. (for P) below eq. (10.66): $\quad I_{\gamma} \longrightarrow I_{y} \quad$ i.e., change subscript γ to y
RH col 3rd eq. (for M) below eq. (10.66): $\quad k_{\gamma}^{-2} \longrightarrow k_{y}^{-2} \quad$ i.e., change subscript γ to y

LH col last line: $\quad V_{0}$ is $\longrightarrow \quad V_{0}$ is i.e., insert space before "is"
LH col eq. (10.79): should be a box around the equation, as in the MS
$\alpha+i \beta \quad, \quad \alpha+i \beta, \quad$ i.e., delete spaces before comma in denominator $p \longrightarrow \rho \quad$ (lc Greek rho)

231 LH col table 10.1: The last 2 lines should be separated from the third from last by a horizontal line as in the MS
should be a box around the equation, as in the MS
should be a box around the equation, as in the MS
The minus sign in front of the right hand term is so close to the fraction bar that it is hard to see.
RH col last 3 lines of eq. (10.94): These lines should start at the same indent as the previous ϕ_{S} line RH col line below eq. (10.97): $|P T| \ll|M| \quad, \longrightarrow|P T| \ll|M|, \quad$ i.e., delete spaces before comma LH col 2nd paragraph of § 10.9 1st line: λ_{F} and $\longrightarrow \quad \lambda_{F}$ and i.e., insert space before "and" 2nd line, $\lambda_{S}, \longrightarrow \lambda_{S}$, i.e., delete spaces before comma LH col line 5 above eq. (10.106): $\left(C_{M_{q}}+C_{M_{\dot{\alpha}}}\right), \longrightarrow\left(C_{M_{q}}+C_{M_{\dot{\alpha}}}\right)$, i.e., delete space before comma This equation should be in a box, as in the MS.

RH col eq. (10.115), 2nd term:

RH col line below eq. (10.115):

$e^{i \phi_{s}}$	\longrightarrow	$e^{i \phi_{S}}$
$i \phi_{s}^{\prime}$	\longrightarrow	i.e., uc S
$i \phi_{S}^{\prime}$	i.e., uc S	
$\mathrm{~S}=0$	\longrightarrow	$\mathrm{~s}=0$

RH col line 17: insert space after semicolon

P235 RH col line 18:
P235 RH col line 19:
P235 RH col line 20:
insert space after semicolon
insert space before "radians/" in two places
percaliber \longrightarrow per caliber in two places

P237 LH col line under eq. (10.127): $\theta \quad$ i.e., delete space before comma
P237 LH col line 9:
B P237 RH col eq. (10.128) right hand side:
P237 RH col eq. for A below eq. (10.128):

i.e., add the prime to \vec{k}
$i A e^{i \phi} \longrightarrow A e^{i \phi} \quad$ i.e., delete the factor i (wrong in MS)
square brackets are missing, i.e., it should read

$$
A=\frac{\rho S d}{2 m}\left[k_{y}^{-2}\left(C_{m_{0}}+i C_{n_{0}}\right)+\left(\phi^{\prime}-1\right)\left(C_{Y_{0}}+i C_{Z_{0}}\right)\right]
$$

P237 RH col line 12, 2nd equation: $\quad \phi=\int_{0}^{S} \phi^{\prime} d s_{1} \longrightarrow \phi=\int_{0}^{s} \phi^{\prime} d s_{1} \quad$ i.e., lc "s" in limit of integral

P237 RH col line 13:
 no indent

B P237 RH col eq. (10.131), numerator of RHS: $-i A \longrightarrow-A \quad$ i.e., delete the factor i (wrong in MS)
P238 LH col line 13: ξ, \quad i.e., delete space before comma
P238 LH col line 14: amplitude, δ, \longrightarrow amplitude, δ, \quad i.e., add space between comma and δ
P238 LH col 2 lines below eq. (10.32): cant, $\delta_{\mathrm{F}} \longrightarrow$ cant, δ_{F} i.e., insert space
P238 RH col line 2: $\tilde{\Psi}-\Phi=\Psi \longrightarrow \tilde{\Psi}-\Phi=\Psi^{*} \quad$ i.e., add asterisk

Chapter $11 \quad$ PP240-251

H P241 LH col lines 3,4: $\quad S=d^{2} / 4 \longrightarrow S=\pi d^{2} / 4 \quad$ i.e., insert Greek π and move ${ }^{2}$ closer to d P241 LH col 2 lines below eq. (11.3): $\vec{i} \bullet \vec{x}=\gamma \quad \longrightarrow \quad$ i.e., delete space before comma H P241 LH col 3 lines below eq. (11.5): $\quad \phi$ and $\theta, \quad \longrightarrow \quad$ and θ, \quad i.e., change spacings

P242 LH col line under eq. (11.21): definition into \longrightarrow definition $\left(V^{\prime} / V\right)=-C_{D}^{*}$ into
P242 LH col line under eq. (11.26): $\quad i=\sqrt{-1} \quad, \quad$ i.e., delete space before comma
P242 LH col 2nd line under (11.26): $\xi=\alpha+i \beta, \quad \longrightarrow \quad \xi=\alpha+i \beta, \quad$ i.e., delete space before comma
P242 RH col, $\mathrm{K}_{\mathrm{s} 0}$ term of eq. (11.30): all s are cap S except the last one after the ")" 3 instances

$$
K_{s_{0}} e^{i \phi_{s 0}} e^{\left(\lambda_{s}+i \phi_{s}^{\prime}\right) s} \quad \longrightarrow \quad K_{S_{0}} e^{i \phi_{S_{0}}} e^{\left(\lambda_{s}+i \phi_{s}^{\prime}\right) s}
$$

RH col in 1st term of 2nd line of eq. (11.38): $\quad-\frac{1}{\phi_{s}^{\prime 2}} \longrightarrow-\frac{1}{\phi_{S}^{\prime 2}} \quad$ i.e., uc subscript S
P243 RH col line below eq. (11.38): coefficient, $C_{L_{\alpha}}{ }^{*}, \longrightarrow$ coefficient, $C_{L_{\alpha}}{ }^{*}, \quad$ i.e., add space before C
P244 RH col eq. (11.45): $\phi_{F}^{\prime}-\phi_{S}^{\prime} \quad \longrightarrow \quad \phi_{F}^{\prime} \phi_{S}^{\prime} \quad$ i.e., a product, as in MS

P244 RH col eq. (11.46): $P=\phi_{F}^{\prime}-\phi_{S}^{\prime} \quad \longrightarrow \quad P=\phi_{F}^{\prime}+\phi_{S}^{\prime} \quad$ i.e., + as in MS

P245 LH col line 9 below Fig. 11.2:
P245 LH col last line:

P246 RH col last term of eq. (11.49):
P246 RH col eq. (11.49):
yaw, ξ_{0}, \longrightarrow yaw, ξ_{0}, i.e., change spacings by commas
that $\xi_{0} \longrightarrow$ that $\xi_{0} \quad$ i.e., insert space after "that"

$$
K_{s_{0}} \quad \longrightarrow \quad K_{S_{0}} \quad \text { i.e., cap } S
$$

This equation should be in a box, as in the MS.

P248

P264 LH line 8 from top:
P264 LH col eq. (12.103): LH col eq. (11.57):

Chapter 12
 PP252-272

RH col line below eq. (12.21):

RH col line below eq. (12.22):
RH col 2 lines above eq. (12.26):
LH col 2 lines above eq. (12.36):
RH col line 4 above eq. (12.45):

RH col line 3 above eq. (12.45)

RH col line 4 above eq. (12.71):
RH col eq. (12.71):

LH col line 4 below Fig 11.4: $\quad\left(\lambda_{S} \longrightarrow\left(\lambda_{S}\right.\right.$
unclear unless insert space between "(" and " λ " RH col line 10 from bottom: determine $C_{L_{\alpha}} \longrightarrow$ determine $C_{L_{\alpha}} \quad$ i.e., insert space before $C_{L_{\alpha}}$ LH col line 9 from bottom: definition, $M \longrightarrow$ definition, M i.e., insert space after comma This equation should be in a box, as in the MS.
set $\phi^{\prime} \longrightarrow$ set ϕ^{\prime} i.e., insert space after "set"

RH col line 2 above Fig 11.7: coefficient, $C_{M_{\alpha}} \longrightarrow$ coefficient, $C_{M_{\alpha}} \quad$ i.e., insert space after comma

RH col 2nd line before Fig 12.3: move the two lines "(radi" and "ans/sec)" to make a single 2 nd line, i.e., "(radians/sec)"
LH col 3rd line below eq. (12.9):
$(2 / \mathrm{n}) \longrightarrow(2 \pi / \mathrm{n})$
i.e., insert π
RH col line 5/bottom:
$y \longrightarrow \vec{y}$
i.e,, add \rightarrow on top of y

Fig 12.4: \quad The symbol \in, to left of the center-of-gravity symbol, has been replaced everywhere else in the book by $\hat{\varepsilon}$. The larger right-hand ε should be $\hat{\varepsilon}$

RH col eq. (12.20), 2 nd term after $=$ sign:

$$
\vec{r} \frac{d \vec{x}}{d t} \quad \longrightarrow \quad \vec{r} \bullet \frac{d \vec{x}}{d t}
$$

i.e., insert dot
better with $d \vec{x} / d t$ instead of $\frac{d \vec{x}}{d t}$

$$
\begin{array}{r}
\text { better with } m_{E} d \vec{x} / d t \text { instead of } m_{E} \frac{d \vec{x}}{d t} \\
l_{E} \gamma \vec{i} \longrightarrow l_{E} \gamma \vec{i}, \quad \begin{array}{l}
\text { i.e., delete space before comma } \\
\mathrm{s}, \longrightarrow \text { s, } \\
\text { of } \alpha \longrightarrow \text { i.e., delete space before comma } \\
\text { yaw }, \gamma \longrightarrow \text { of } \alpha \\
\text { of } \alpha
\end{array} \longrightarrow \text { yaw, } \gamma \quad \begin{array}{l}
\text { i.e., insert space before } \alpha \\
\text { i.e., insert space before } \gamma \\
\text { of } \alpha
\end{array} \\
\mathrm{e}^{\mathrm{i} \varphi} . \text { Substituting } \longrightarrow \mathrm{e}^{\mathrm{i} \varphi} . \text { Substituting }
\end{array}
$$

$m \varepsilon \longrightarrow m \hat{\varepsilon}$
i.e., insert ${ }^{\wedge}$ over the ε
$\varepsilon \longrightarrow \hat{\varepsilon}$
i.e., insert ${ }^{\wedge}$ over the ε
0.94 (in italics) should be 0.94 (in roman)
$\left(K_{T} \quad 0.3\right.$ degree $) \longrightarrow\left(K_{T} \approx 0.3\right.$ degree $) \quad$ i.e., insert $" \approx$ "as in MS
$\delta_{M A X}, \longrightarrow \delta_{M A X}, \quad$ i.e., delete space before comma
$P+\sqrt{P^{2}-4 M} \quad \longrightarrow \quad P-\sqrt{P^{2}-4 M}$
$\varepsilon, \quad \longrightarrow \quad$ i.e., delete space before comma
ε with $\longrightarrow \varepsilon$ with
i.e., insert space before "with"
$\operatorname{sine} \varepsilon, \quad$ ine ε, \quad i.e., delete spaces after $\sin \varepsilon$
point, $\hat{\varepsilon} \longrightarrow$ point, $\hat{\varepsilon} \quad$ i.e., insert space before $\hat{\varepsilon}$

P265 LH col line 4 from bottom: muzzle, $\phi_{0} \longrightarrow$ muzzle, $\phi_{0} \quad$ i.e., insert space before ϕ_{0}
P265 RH col line 2 after eq. (12.82): twist) \longrightarrow twist). i.e., add period

P266 LH col line 13 from bottom: then $\phi_{0} \longrightarrow$ then $\phi_{0} \quad$ i.e., insert space after "then"
P266 LH col line 9 from bottom (eq. for T_{L}): delete minus sign to the right of both equal signs
P266 RH col eq. (12.85): This equation should be in a box, as in the MS.

P267

P268 LH col line 3 from top:

RH col line 2 above eq. (12.100):
RH col line 3 above eq. (12.100):

$$
\xi_{0}=i p \varepsilon \quad \longrightarrow \quad \dot{\xi}_{0}=i p \varepsilon \quad \text { i.e., change } \xi_{0} \text { to } \dot{\xi}_{0}
$$

move the eq $\varepsilon=\ldots$ to the left
$\varepsilon \quad \longrightarrow \quad$ i.e., delete space after comma

$$
, \xi_{0}^{\prime} \longrightarrow, \xi_{0}^{\prime} \quad \text { i.e., insert space before } \xi_{0}^{\prime}
$$

yaw, ξ_{0}, \longrightarrow yaw, ξ_{0}, i.e., insert space before ξ_{0}
yaw, ξ_{0}, \longrightarrow yaw, ξ_{0}, \quad i.e., insert space before ξ_{0} RH col line under eq. (12.95): approximate with throughout \longrightarrow approximate $V_{x_{0}}$ with V_{x} throughout LH col 3rd line below heading §12.10: Stern \longrightarrow Sterne i.e., add e, as in refs 9,10 .
rate, $\xi_{0}^{\prime} \longrightarrow$ rate, $\xi_{0}^{\prime} \quad$ i.e., insert space before ξ_{0}^{\prime} yaw, $\xi_{0} \longrightarrow$ yaw, $\xi_{0} \quad$ i.e., insert space before ξ_{0}

Chapter 13 PP273-298

LH col last line:

RH col line 2:
$C_{M_{a(R)}} \quad, \longrightarrow C_{M_{a(R)}}$,
i.e., delete space before comma

P279 LH col line 23 from bottom:
$C_{M_{a_{0}}} \quad, \quad$ i.e., delete space before comma
, $C_{M_{a_{2}}} \quad, \longrightarrow, C_{M_{a_{2}}}, \quad$ i.e., change spacings by commas

P280 RH col eq. (13.19):
P280 RH col line 2 from bottom:
P281
RH col line 1 first 2 terms of eq. (13.37):

$$
2 \lambda_{F}-\phi_{F}^{\prime} \longrightarrow 2 \lambda_{F} \phi_{F}^{\prime} \quad \text { i.e., delete minus sign to get } 1 \text { term }
$$

P281 RH col eq. (13.42) 2nd term after $=$ sign:

$$
K_{F}^{2}+K_{S}^{2} \longrightarrow K_{F}^{2}-K_{S}^{2} \quad \text { i.e., change }+ \text { to }-
$$

P281 RH col line 2 below eq. (13.44): although "definition" is in the MS, it is actually shown as an approximation in eq. (13.42). Therefore "definition" should be replaced by "approximation".
P281
RH col eq. (13.46):

$$
-H_{0} \phi_{S}^{\prime} \quad \longrightarrow \quad+H_{0} \phi_{S}^{\prime}
$$

i.e., change - to +

P282 LH col eq. (13.53) in []: $\quad \frac{\phi_{F}^{\prime}-\phi_{S}^{\prime}}{\phi_{F}^{\prime}-\phi_{S}^{\prime}} \longrightarrow \frac{\phi_{F}^{\prime}+\phi_{S}^{\prime}}{\phi_{F}^{\prime}-\phi_{S}^{\prime}} \quad$ i.e., + in numerator, not -

LH col both lines above eq. (13.58):
replace "curve of Figure 13.16 with a seventh-power (or higher) series expansion, stated as equation (13.58):"
by \quad with a seventh-power (or higher) series expansion, which yields the Magnus moment coefficient $C_{M_{p \alpha}}$ in even powers as eq. (13.58):"
LH col: replace eq. (13.58) with $\quad C_{M_{p \alpha}}=C_{M_{p \alpha_{0}}}+C_{M_{p \alpha_{2}}} \sin ^{2} \alpha+C_{M_{p \alpha_{4}}} \sin ^{4} \alpha+C_{M_{p \alpha_{6}}} \sin ^{6} \alpha+$
RH col eq. (13.60)

$$
-H_{0} \phi_{S}^{\prime} \longrightarrow+H_{0} \phi_{S}^{\prime} \quad \text { i.e., change }- \text { to }+
$$

$$
+P\left(T_{0}+T_{2} \delta_{e S}^{2}\right) \quad \longrightarrow \quad-P\left(T_{0}+T_{2} \delta_{e S}^{2}\right) \quad \text { i.e., change }+\mathrm{P} \text { to }-\mathrm{P}
$$

LH col line 3 from bottom: $\quad C_{M_{p \alpha_{0}}}, \longrightarrow C_{M_{p \alpha_{0}}}, \quad$ i.e., delete space before comma
LH col line 2 from bottom: $\quad C_{M_{p \alpha_{2}}}, \longrightarrow C_{M_{p \alpha_{2}}}, \quad$ i.e., delete space before comma
RH col line 9 below sketch: $\quad \lambda_{F} 0 \longrightarrow \lambda_{F} \approx 0 \quad$ i.e., insert " $\approx "$

LH col line 2: coefficient, $C_{L_{\alpha}}, \longrightarrow$ coefficient, $C_{L_{\alpha}}$, i.e., change spacings by commas
RH col:
Figure is Figure 13.28
i.e., change 13.26 to 13.28

RH col line 2 below eq. (13.73): $\hat{C}_{M_{\alpha}}, \longrightarrow \hat{C}_{M_{\alpha}}, \quad$ i.e., delete space before comma

LH col last line: $\quad C_{D_{0}}, \longrightarrow C_{D_{0}}, \quad$ i.e., delete space before comma

RH col eq. (13.86):

$$
C_{L_{\alpha_{0}}}-C_{L_{\alpha_{2}}} \delta_{e s w}^{2} \longrightarrow C_{L_{\alpha_{0}}}+C_{L_{\alpha_{2}}} \delta_{e s w}^{2} \quad \text { i.e., change }- \text { to }+
$$

LH col line 10 from bottom: two- center \longrightarrow two-center i.e., delete space after hyphen LH col line 4 from bottom:

$$
C_{M_{p \alpha_{0}}} \text { and } C_{M_{p \alpha_{2}}} \longrightarrow C_{M_{p \alpha_{0}}} \text { and } C_{M_{p \alpha_{2}}} \quad \text { i.e., insert spaces before and after "and" }
$$

RH col reference 15: insert blank line above ref. 15.

Chapter $14 \quad$ PP299-328

RH col line 17: than __ inch \longrightarrow than $1 / 2$ inch
RH col line 4: $\quad 1 / 2 \rho V^{2} S . \longrightarrow 1 / 2 \rho V^{2} S . \quad$ i.e., delete the second period
RH col line 6: $\quad 1 / 2 \rho V^{2} S d . \longrightarrow 1 / 2 \rho V^{2} S d$.
i.e., delete space before period

RH col 5th line above eq. (10.77): $C_{l_{\delta}}, \longrightarrow C_{l_{\delta}}$,
i.e., delete space before comma

$$
C_{l_{p}}, \longrightarrow C_{l_{p}}
$$

i.e., delete space before comma

RH col line 2 above eq. (10.77): and $K_{\delta} \longrightarrow$ and K_{δ}
i.e., insert space after "and"

RH col eq. (10.77): $\quad \phi=\phi_{0}^{\prime}-\ldots \quad \longrightarrow \quad \phi=\phi_{0}-\ldots$
i.e., delete the prime

RH col line 4 below eq. (14.lc): $\quad C_{l_{p}}, \longrightarrow C_{l_{p}}$,
i.e., delete space before comma

RH col line 7 below eq. (14.lc): $\quad C_{l_{p}}, \longrightarrow C_{l_{p}}$,

P305 RH col eq. (10.94): There should be a box around the equation, as in MS
P306 LH col eq. (11.29): There should be a box around the equation, as in MS
P306 RH col line 1: $\tan \phi_{0}, \longrightarrow \tan \phi_{0}, \quad$ i.e., delete space before comma
P306 RH col line 3: $\tan \theta_{0}, \longrightarrow \tan \theta_{0}, \quad$ i.e., delete space before comma
P306 RH col line 2 below eq. (14.11): coefficient, $C_{L_{\alpha}}, \longrightarrow$ coefficient, $C_{L_{\alpha}}$,
i.e., insert space before and delete space after $C_{L_{\alpha}}$

P308 under Table 14.3
Insert "See Notes 1 and 2 on P307 (RH column) for meaning for * and ?? "
P309 LH col line 4 in Table 14.4: move Coefficient next to Aerodynamic i.e., Aerodynamic Coefficient
P309 LH col lines 7, 8, 10: $, C \longrightarrow, C \quad$ i.e., add space before all C symbols
e.g., (line 7) $\quad, C_{M_{\alpha}} \longrightarrow, C_{M_{\alpha}}$

P309 LH col line 11: Coefficients $C_{l_{p}}, \longrightarrow$ Coefficients, $C_{l_{p}}$, i.e., add comma after "coefficients"
H
P311 LH col line 3: Asketch \longrightarrow A sketch i.e., add space after "A"
P311 LH col line 15: $\quad C_{l_{p}}, \longrightarrow, C_{l_{p}}$,
i.e., add space before and delete space after $C_{l_{p}}$

P311 LH col line 16:
P311 LH col line 18:
P311 LH col line 24:
of $C_{l_{p}} \longrightarrow$ of $C_{l_{p}}$
general, $C_{l_{p}} \longrightarrow$ general, $C_{l_{p}}$
in $C_{l_{p}} \longrightarrow$ in $C_{l_{p}}$
H P311 RH col line 2:
P311 RH col line 4:
P311 RH col line 5:
$, C_{M_{\alpha}}, \longrightarrow, C_{M_{\alpha}}$,
of $C_{M_{\alpha}} \longrightarrow$ of $C_{M_{\alpha}}$
in $C_{M_{\alpha}} \longrightarrow$ in $C_{M_{\alpha}}$
$, C_{N_{\alpha}}, \longrightarrow, C_{N_{\alpha}}$,
i.e., add space before and delete space after $C_{N_{\alpha}}$

P311 RH col line 10:
P311 RH col line 13:
P311 RH col line 21:
P311 RH col line 26:
P311 RH col line 27:

P315 LH col line 2 below eq. (14.18):
LH col line 3 below eq. (14.18):
P315 RH col eq. (14.21): There should be a box around the equation, as in MS
P315 RH col line below eq. (14.21): no indent before "where"
the ${ }_{C G} \longrightarrow$ the $\Delta_{C G} \quad$ i.e., insert Δ before subscript $C G$
P315 RH col eq. (14.22): There should be a box around the equation, as in MS
P315 RH col eq. (14.23): There should be a box around the equation, as in MS
P315 RH col line 4 below eq. (14.23): the ${ }_{C G} \longrightarrow$ the $\Delta_{C G} \quad$ i.e., insert Δ before subscript $C G$
P315 RH col line 6 below eq. (14.23): $, C G \longrightarrow, \Delta_{C G} \longrightarrow \quad$ i.e., insert Δ before subscript $C G$
P315 RH col line 7 below eq. (14.23): $, C G \longrightarrow, \Delta_{C G} \quad$ i.e., insert Δ before subscript $C G$
replace
with
delete "Figure 14.15 Pitch Damping Coefficients vs Mach Number" in Figure 14.15(b) (lower curve)
$\odot\left[C_{M_{q}}+C_{M_{\dot{\alpha}}}\right]$ vs Center of Gravity
$\odot\left\lfloor C_{N_{q}}+C_{N_{\dot{\alpha}}}\right\rfloor$ vs Mach Number
"Figure 14.15(b). Pitch Damping Force Coefficient vs. Mach Number"

P317 Figure 14.17b (lower curve):
"Pitching Moment Coefficient vs. Mach Number" in small font between the label Mach Number and the bottom of the box

Figure $14.28 \longrightarrow$ Figure 14.28 (page 328) RH col ref 17 3rd line: This should be moved up after "Report", i.e.,

Report No. 1048, 1958
\longrightarrow Report No. 1048, 1958

There is NO index!!!

Chapter 9 references are appended below.

REFERENCES - CHAPTER 9

1. Fowler, R. H., E. G. Gallop, C. N. H. Lock and H. W. Richmond, "The Aerodynamics of a Spinning Shell," Philosophical Transactions of the Royal Society of London, Series A, Volume 221, 1920.
2. Kent, R. H., "Notes on a Theory of Spinning Shell," Ballistic Research Laboratories Report No. 898, 1954.
3. Nielsen, K. L., and J. L. Synge, "On the Motion of a Spinning Shell," Ballistic Research Laboratories Report No. X116, 1943.
4. Kelley, J. L., and E. J. McShane, "On the Motion of a Projectile With Small or Slowly Changing Yaw," Ballistic Research Laboratories Report No. 446, 1944.
5. Lieske, R. F., and R. L. McCoy, "Equations of Motion of a Rigid Projectile," Ballistic Research Laboratories Report No. 1244, 1964.
6. DeGrafft, W. E., "An IBM 7090 Six-Degree-of-Freedom Trajectory Program, Naval Ordnance Laboratory Technical Report No. 64-225, White Oak, Maryland, 1965.
7. Friedman, E. M., "PANOL Six-Degrees-of-Freedom System Analysis and Usage," U.S. Army Armament Research and Development Command Technical Report ARLCD-TR-77025, 1977.
8. Synge, J., and B. Griffith, Principles of Mechanics, McGraw-Hill, New York, NY, 1959.
9. Carnahan, B., H. A. Luther, and J. O. Wilkes, Applied Numerical Methods, John Wiley \& Sons, New York, NY, 1969.
10. Gill, S., "A Process for the Step-by-Step Integration of Differential Equations in an Automatic Computing Machine," Proceedings of the Cambridge Philosophical Society, No. 46, 1951.
11. McCoy, R. L., "The Aerodynamic Characteristics of 7.62 mm Match Bullets," Ballistic Research Laboratory Memorandum Report No. BRL-MR-3733, 1988.
12. Roecker, E. T., "The Aerodynamic Properties of the 105 mm HE Shell, M1, in Subsonic and Transonic Flight," Ballistic Research Laboratories Memorandum Report No. 929, 1955.
13. McCoy, R. L., "The Subsonic Aerodynamic Characteristics of the 105 mm HE Shell, M1, at Angles of Attack From Zero to 180 Degrees," Ballistic Research Laboratories Memorandum Report No. 2353, 1974.
14. Murphy, C. H., "Free Flight Motion of Symmetric Missiles," Ballistic Research Laboratories Report No. 1216, 1963.
15. Brown, T. G., Jr., and R. L. McCoy, "Free-Flight Aerodynamic Characteristics of Three 120 mm Mortar Projectiles: XM934-HE, XM930-Illuminating, XM929-Smoke," Ballistic Research Laboratory Memorandum Report No. BRL-MR3884, 1991.
16. Lieske, R. F., and M. L. Reiter, "Equations of Motion for a Modified Point Mass Trajectory," Ballistic Research Laboratories Report No. 1314, 1966.
17. Bradley, J. W., "An Alternative Form of the Modified Point-Mass Equation of Motion," Ballistic Research Laboratory Memorandum Report No. BRL-MR-3875, 1990.
